This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057206 #18 Mar 07 2017 20:59:39 %S A057206 5,29,11,1367,13082189,89,59,29819952677,91736008068017,17, %T A057206 887050405736870123700827, %U A057206 688273423680369013308306870159348033807942418302818522537,74367405177105011,12731422703,1812053 %N A057206 Primes of the form 6k+5 generated recursively: a(1)=5; a(n) = min{p, prime; p mod 6 = 5; p | 6Q-1}, where Q is the product of all previous terms in the sequence. %C A057206 There are infinitely many primes of the form 6k + 5, and this sequence figures in the classic proof of that fact. - _Alonso del Arte_, Mar 02 2017 %D A057206 Dirichlet, P. G. L. (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages. %D A057206 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13. %H A057206 Robert Price, <a href="/A057206/b057206.txt">Table of n, a(n) for n = 1..17</a> %e A057206 a(3) = 11 is the smallest prime divisor of the form 6k + 5 of 6 * (5 * 29) - 1 = 6Q - 1 = 11 * 79 = 869. %t A057206 primes5mod6 = {5}; q = 1;For[n = 2, n <= 10, n++, q = q * Last[ primes5mod6]; AppendTo[primes5mod6, Min[Select[FactorInteger[6 * q - 1][[All, 1]], Mod[#, 6] == 5 &]]];]; primes5mod6 (* _Robert Price_, Jul 18 2015 *) %o A057206 (PARI) main(size)={my(v=vector(size),i,q=1,t);for(i=1,size,t=1;while(!(prime(t)%6==5&&(6*q-1)%prime(t)==0),t++);v[i]=prime(t);q*=v[i]);v;} /* _Anders Hellström_, Jul 18 2015 */ %Y A057206 Cf. A000945, A000946, A005265, A005266, A051308-A051335, A057204-A057208, A007528. %K A057206 nonn %O A057206 1,1 %A A057206 _Labos Elemer_, Oct 09 2000 %E A057206 a(13)-a(17) from _Robert Price_, Jul 18 2015