cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057210 Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct.

This page as a plain text file.
%I A057210 #16 Apr 05 2023 08:33:22
%S A057210 1,0,1,1,3,3,10,9,23,30,66,80,162,209,374,507,835,1113,1778,2344,3532,
%T A057210 4670,6796,8825,12501,16091,22142,28232,38016,47868,63416,79023,
%U A057210 102684,126973,162793,199128,252082,306061,382627,461020
%N A057210 Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct.
%D A057210 P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32.
%H A057210 Gunnar Brinkmann, <a href="/A057210/b057210.txt">Table of n, a(n) for n = 10..100</a> (Received Aug 18, 2006)
%H A057210 Philip Engel and Peter Smillie <a href="https://arxiv.org/abs/1702.02614">The number of non-negative curvature triangulations of S^2</a>, arXiv:1702.02614 [math.GT], 2017.
%H A057210 Philip Engel, Jan Goedgebeur, and Peter Smillie, <a href="https://arxiv.org/abs/2304.01655">Exact enumeration of fullerenes</a>, arXiv:2304.01655 [math.GT], 2023.
%F A057210 a(n) = (809/1306069401600)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, A013957. - _Philip Engel_, Nov 29 2017
%Y A057210 Cf. A007894, A013957.
%K A057210 nonn
%O A057210 10,5
%A A057210 _N. J. A. Sloane_, Aug 28 2003