This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057210 #16 Apr 05 2023 08:33:22 %S A057210 1,0,1,1,3,3,10,9,23,30,66,80,162,209,374,507,835,1113,1778,2344,3532, %T A057210 4670,6796,8825,12501,16091,22142,28232,38016,47868,63416,79023, %U A057210 102684,126973,162793,199128,252082,306061,382627,461020 %N A057210 Number of fullerenes with 2n vertices (or carbon atoms), counting enantiomorphic pairs as distinct. %D A057210 P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32. %H A057210 Gunnar Brinkmann, <a href="/A057210/b057210.txt">Table of n, a(n) for n = 10..100</a> (Received Aug 18, 2006) %H A057210 Philip Engel and Peter Smillie <a href="https://arxiv.org/abs/1702.02614">The number of non-negative curvature triangulations of S^2</a>, arXiv:1702.02614 [math.GT], 2017. %H A057210 Philip Engel, Jan Goedgebeur, and Peter Smillie, <a href="https://arxiv.org/abs/2304.01655">Exact enumeration of fullerenes</a>, arXiv:2304.01655 [math.GT], 2023. %F A057210 a(n) = (809/1306069401600)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, A013957. - _Philip Engel_, Nov 29 2017 %Y A057210 Cf. A007894, A013957. %K A057210 nonn %O A057210 10,5 %A A057210 _N. J. A. Sloane_, Aug 28 2003