This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057273 #24 Jan 11 2022 19:53:24 %S A057273 1,0,0,1,0,0,0,2,9,6,1,0,0,0,0,6,84,316,492,417,212,66,12,1,0,0,0,0,0, %T A057273 24,720,6440,26875,65280,105566,122580,106825,71700,37540,15344,4835, %U A057273 1140,190,20,1,0,0,0,0,0,0,120,6480,107850,868830,4188696,13715940 %N A057273 Triangle T(n,k) of the number of strongly connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1). %D A057273 Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 2. %H A057273 Andrew Howroyd, <a href="/A057273/b057273.txt">Table of n, a(n) for n = 1..2680</a> (rows 1..20) %H A057273 Kassie Archer, Ira M. Gessel, Christina Graves, and Xuming Liang, <a href="https://arxiv.org/abs/1909.01550">Counting acyclic and strong digraphs by descents</a>, arXiv:1909.01550 [math.CO], 20 Mar 2020. See Table 2. %e A057273 Triangle begins: %e A057273 [1] 1; %e A057273 [2] 0,0,1; %e A057273 [3] 0,0,0,2,9,6,1; %e A057273 [4] 0,0,0,0,6,84,316,492,417,212,66,12,1; %e A057273 ... %e A057273 Number of strongly connected digraphs on 3 labeled nodes is 18 = 2+9+6+1. %o A057273 (PARI) %o A057273 B(nn, e=2)={my(v=vector(nn)); for(n=1, nn, v[n] = e^(n*(n-1)) - sum(k=1, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[k])); v} %o A057273 Strong(n, e=2)={my(u=B(n, e), v=vector(n)); v[1]=1; for(n=2, #v, v[n] = u[n] + sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v} %o A057273 row(n)={ Vecrev(Strong(n, 1+'y)[n]) } %o A057273 { for(n=1, 5, print(row(n))) } \\ _Andrew Howroyd_, Jan 10 2022 %Y A057273 Row sums give A003030. %Y A057273 The unlabeled version is A057276. %Y A057273 Cf. A057271, A057272, A057274, A057275, A062735. %Y A057273 Cf. A123554, A339590, A339807. %K A057273 nonn,tabf %O A057273 1,8 %A A057273 _Vladeta Jovovic_, Goran Kilibarda, Sep 14 2000 %E A057273 Terms a(46) and beyond from _Andrew Howroyd_, Jan 10 2022