This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057333 #30 Feb 16 2025 08:32:43 %S A057333 4,20,74,347,1743,8385,44355,229952,1235489,6629026,37152645, %T A057333 202017712,1142393492,6333190658 %N A057333 Numbers of n-digit primes that undulate. %C A057333 'Undulate' means that the alternate digits are consistently greater than or less than the digits adjacent to them (e.g., 70769). Smoothly undulating palindromic primes (e.g., 95959) are a subset and included in the count. %D A057333 C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317. %H A057333 C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&format=complete">Zentralblatt review</a> %H A057333 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UndulatingNumber.html">Undulating Number.</a> %o A057333 (Python) %o A057333 from sympy import isprime %o A057333 def f(w,dir): %o A057333 if dir == 1: %o A057333 for s in w: %o A057333 for t in range(int(s[-1])+1,10): %o A057333 yield s+str(t) %o A057333 else: %o A057333 for s in w: %o A057333 for t in range(0,int(s[-1])): %o A057333 yield s+str(t) %o A057333 def A057333(n): %o A057333 c = 0 %o A057333 for d in '123456789': %o A057333 x = d %o A057333 for i in range(1,n): %o A057333 x = f(x,(-1)**i) %o A057333 c += sum(1 for p in x if isprime(int(p))) %o A057333 if n > 1: %o A057333 y = d %o A057333 for i in range(1,n): %o A057333 y = f(y,(-1)**(i+1)) %o A057333 c += sum(1 for p in y if isprime(int(p))) %o A057333 return c # _Chai Wah Wu_, Apr 25 2021 %Y A057333 Cf. A046075, A033619, A032758, A039944, A016073, A046076, A046077, A057332. %K A057333 nonn,base,more %O A057333 1,1 %A A057333 _Patrick De Geest_, Sep 15 2000 %E A057333 Offset corrected and a(10)-a(11) from _Donovan Johnson_, Aug 08 2010 %E A057333 a(12) from _Giovanni Resta_, Feb 24 2013 %E A057333 a(2) corrected by _Chai Wah Wu_, Apr 25 2021 %E A057333 a(13)-a(14) from _Chai Wah Wu_, May 02 2021