This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057335 #38 Jun 26 2025 07:59:23 %S A057335 1,2,4,6,8,12,18,30,16,24,36,60,54,90,150,210,32,48,72,120,108,180, %T A057335 300,420,162,270,450,630,750,1050,1470,2310,64,96,144,240,216,360,600, %U A057335 840,324,540,900,1260,1500,2100,2940,4620,486,810,1350,1890,2250,3150,4410 %N A057335 a(0) = 1, and for n > 0, a(n) = A000040(A000120(n)) * a(floor(n/2)); essentially sequence A055932 generated using A000120, hence sorted by number of factors. %C A057335 Note that for n>0 the prime divisors of a(n) are consecutive primes starting with 2. All of the least prime signatures (A025487) are included; with the other values forming A056808. %C A057335 Using the formula, terms of b(n)= a(n)/A057334(n) are: 1, 1, 2, 2, 4, 4, 6, 6, 8, ..., indeed a(n) repeated. - _Michel Marcus_, Feb 09 2014 %C A057335 a(n) is the unique normal number whose unsorted prime signature is the k-th composition in standard order (graded reverse-lexicographic). This composition (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. A number is normal if its prime indices cover an initial interval of positive integers. Unsorted prime signature is the sequence of exponents in a number's prime factorization. - _Gus Wiseman_, Apr 19 2020 %H A057335 Michael De Vlieger, <a href="/A057335/b057335.txt">Table of n, a(n) for n = 0..10000</a> %F A057335 a(n) = A057334(n) * a (repeated). %F A057335 A334032(a(n)) = n; a(A334032(n)) = A071364(n). - _Gus Wiseman_, Apr 19 2020 %F A057335 a(n) = A122111(A019565(n)); A019565(n) = A122111(a(n)). - _Peter Munn_, Jul 18 2020 %F A057335 a(n) = A336321(2^n). - _Peter Munn_, Mar 04 2022 %F A057335 Sum_{n>=0} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - _Amiram Eldar_, Jun 26 2025 %e A057335 From _Gus Wiseman_, Apr 19 2020: (Start) %e A057335 The sequence of terms together with their prime indices begins: %e A057335 1: {} %e A057335 2: {1} %e A057335 4: {1,1} %e A057335 6: {1,2} %e A057335 8: {1,1,1} %e A057335 12: {1,1,2} %e A057335 18: {1,2,2} %e A057335 30: {1,2,3} %e A057335 16: {1,1,1,1} %e A057335 24: {1,1,1,2} %e A057335 36: {1,1,2,2} %e A057335 60: {1,1,2,3} %e A057335 54: {1,2,2,2} %e A057335 90: {1,2,2,3} %e A057335 150: {1,2,3,3} %e A057335 210: {1,2,3,4} %e A057335 32: {1,1,1,1,1} %e A057335 48: {1,1,1,1,2} %e A057335 For example, the 27th composition in standard order is (1,2,1,1), and the normal number with prime signature (1,2,1,1) is 630 = 2*3*3*5*7, so a(27) = 630. %e A057335 (End) %t A057335 Table[Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ IntegerDigits[n, 2]], {n, 0, 54}] (* _Michael De Vlieger_, May 23 2017 *) %o A057335 (PARI) mg(n) = if (n==0, 1, prime(hammingweight(n))); \\ A057334 %o A057335 lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); v;} \\ _Michel Marcus_, Feb 09 2014 %o A057335 (PARI) A057335(n) = if(0==n,1,prime(hammingweight(n))*A057335(n\2)); \\ _Antti Karttunen_, Jul 20 2020 %Y A057335 Cf. A000120, A057334, A055932 and A056808. %Y A057335 Cf. A324939. %Y A057335 Unsorted prime signature is A124010. %Y A057335 Numbers whose prime signature is aperiodic are A329139. %Y A057335 The reversed version is A334031. %Y A057335 A partial inverse is A334032. %Y A057335 All of the following pertain to compositions in standard order (A066099): %Y A057335 - Length is A000120. %Y A057335 - Sum is A070939. %Y A057335 - Strict compositions are A233564. %Y A057335 - Constant compositions are A272919. %Y A057335 - Aperiodic compositions are A328594. %Y A057335 - Normal compositions are A333217. %Y A057335 - Permutations are A333218. %Y A057335 - Heinz number is A333219. %Y A057335 Cf. A005867, A029931, A048793, A052409, A056239, A066099, A112798, A124767, A228351, A233249, A333220, A345974. %Y A057335 Related to A019565 via A122111 and to A000079 via A336321. %K A057335 easy,nonn %O A057335 0,2 %A A057335 _Alford Arnold_, Aug 27 2000 %E A057335 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003 %E A057335 New primary name from _Antti Karttunen_, Jul 20 2020