This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057340 #28 Jun 02 2022 10:26:18 %S A057340 1,2,6,12,12,12,12,24,72,60,60,72,72,72,120,240,240,180,180,360,360, %T A057340 360,360,720,720,720,720,720,720,720,720,720,720,720,840,2520,2520, %U A057340 2520,2520,1440,1440,2520,2520,2520,2520,2520,2520,5040,5040,5040,5040 %N A057340 Smallest of the most frequently occurring numbers in 1-to-n multiplication cube. %H A057340 Branden Aldridge and David A. Corneth, <a href="/A057340/b057340.txt">Table of n, a(n) for n = 1..10000</a> (first 500 terms from Branden Aldridge) %e A057340 M(n) is the array in which m(x,y,z)=x*y*z for x = 1 to n, y = 1 to n and z = 1 to n. In M(7), the most frequently occurring numbers are 12 and 24, each occurring 15 times. The smallest of these numbers is 12, so a(7) = 12. %o A057340 (Java) %o A057340 public class SmallestMultCube { %o A057340 static int low, highestFrequency = 0; %o A057340 static int[] counters; %o A057340 public static void main(String[] args) { %o A057340 int max=500; %o A057340 counters = new int[max*max*max+1]; %o A057340 for(int outer=1; outer<=max; outer++) { %o A057340 tally(outer*outer*outer, 1); %o A057340 for(int middle=outer-1; middle>=1; middle--) { %o A057340 tally(outer*outer*middle, 3); tally(outer*middle*middle, 3); %o A057340 for(int inner=middle-1; inner>=1; inner--) { %o A057340 tally(outer*middle*inner, 6); } } %o A057340 System.out.println(outer+" "+low); } } %o A057340 private static void tally(int number, int repeatFactor) { %o A057340 counters[number] += repeatFactor; %o A057340 if(counters[number] >= highestFrequency) { %o A057340 if (counters[number] == highestFrequency) %o A057340 if (number < low) low = number; %o A057340 if (counters[number] > highestFrequency) { %o A057340 highestFrequency = counters[number]; low = number; } } } } %o A057340 // _Branden Aldridge_, Apr 15 2022 %Y A057340 Cf. A025487, A057144, A057338, A057343, A057346. %K A057340 nonn %O A057340 1,2 %A A057340 _Neil Fernandez_, Aug 28 2000 %E A057340 More terms from _David W. Wilson_, Aug 28 2001