This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057431 #23 Sep 06 2022 05:59:00 %S A057431 0,1,1,0,1,1,1,2,2,1,1,3,2,3,3,2,3,1,1,4,2,5,3,5,3,4,4,3,5,3,5,2,4,1, %T A057431 1,5,2,7,3,8,3,7,4,7,5,8,5,7,4,5,5,4,7,5,8,5,7,4,7,3,8,3,7,2,5,1,1,6, %U A057431 2,9,3,11,3,10,4,11,5,13,5,12,4,9,5,9,7,12,8,13,7,11,7,10,8,11,7,9,5,6,6,5 %N A057431 Obtained by reading first the numerator then the denominator of fractions in full Stern-Brocot tree (A007305/A047679). %C A057431 When presented in this way, every row (e.g. row 3, 1 3 2 3 3 2 3 1) is a palindrome. - _Joshua Zucker_, May 11 2006 %H A057431 Alois P. Heinz, <a href="/A057431/b057431.txt">Table of n, a(n) for n = 0..10000</a> %H A057431 N. J. A. Sloane, <a href="/stern_brocot.html">Stern-Brocot or Farey Tree</a> %H A057431 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %p A057431 F:= proc(n) option remember; local t; %p A057431 t:= L -> [[L[1], [L[1][1]+L[2][1], L[1][2]+L[2][2]], L[2]], %p A057431 [L[2], [L[2][1]+L[3][1], L[2][2]+L[3][2]], L[3]]][]; %p A057431 if n=0 then [[[ ], [0, 1], [ ]], [[ ], [1, 0], [ ]]] %p A057431 elif n=1 then [[[0, 1], [1, 1], [1, 0]]] %p A057431 else map(t, F(n-1)) %p A057431 fi %p A057431 end: %p A057431 aa:= n-> map(x-> x[], [seq(map(x-> x[2], F(j))[], j=0..n)])[]: %p A057431 aa(7); # aa(n) gives the first 2^(n+1)+2 terms %p A057431 # _Alois P. Heinz_, Jan 13 2011 %t A057431 sbt[n_] := Module[{R, L, Y, w, u}, %t A057431 R = {{1, 0}, {1, 1}}; %t A057431 L = {{1, 1}, {0, 1}}; %t A057431 Y = {{1, 0}, {0, 1}}; %t A057431 w[b_] := Fold[#1.If[#2 == 0, L, R]&, Y, b]; %t A057431 u[a_] := {a[[2, 1]] + a[[2, 2]], a[[1, 1]] + a[[1, 2]]}; %t A057431 Map[u, Map[w, Tuples[{0, 1}, n]]]]; %t A057431 Join[{0, 1, 1, 0}, Table[sbt[n], {n, 0, 5}]] // Flatten (* _Jean-François Alcover_, Sep 06 2022, after _Peter Luschny_ in A007305 *) %Y A057431 Cf. A007305, A047679, A007306, A002487, A057432. %K A057431 nonn,look,easy %O A057431 0,8 %A A057431 _N. J. A. Sloane_, Sep 08 2000 %E A057431 More terms from _Joshua Zucker_, May 11 2006