cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057450 Prime recurrence: a(n+1) = a(n)-th prime, with a(1) = 4.

This page as a plain text file.
%I A057450 #24 Apr 07 2021 14:56:18
%S A057450 4,7,17,59,277,1787,15299,167449,2269733,37139213,718064159,
%T A057450 16123689073,414507281407,12055296811267,392654585611999,
%U A057450 14199419938376521,565855918431234443
%N A057450 Prime recurrence: a(n+1) = a(n)-th prime, with a(1) = 4.
%C A057450 _Lubomir Alexandrov_ informs me that he studied this sequence in his 1965 notebook. - _N. J. A. Sloane_, May 23 2008
%D A057450 Alexandrov, Lubomir. "On the nonasymptotic prime number distribution." arXiv preprint math/9811096 (1998). (See Appendix.)
%H A057450 Lubomir Alexandrov, <a href="http://www1.jinr.ru/Preprints/2002/055(E5-2002-55).pdf">Prime Number Sequences And Matrices Generated By Counting Arithmetic Functions</a>, Communications of the Joint Institute of Nuclear Research, E5-2002-55, Dubna, 2002.
%t A057450 NestList[ Prime, 4, 13 ]
%o A057450 (Python)
%o A057450 from sympy import prime
%o A057450 from itertools import accumulate
%o A057450 def f(an, _): return prime(an)
%o A057450 print(list(accumulate([4]*12, f))) # _Michael S. Branicky_, Apr 07 2021
%Y A057450 Cf. A007097.
%K A057450 nonn,hard,more
%O A057450 1,1
%A A057450 _Robert G. Wilson v_, Sep 26 2000
%E A057450 a(15)-a(17) from _Robert G. Wilson v_, Mar 07 2017 using Kim Walisch's primecount