This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057461 #34 Nov 29 2022 01:19:04 %S A057461 1,2,4,5,6,7,10,12,17,18,20,25,28,31,41,52,66,130,151,180,196,503,650, %T A057461 761,986,1391,1596,2047,2700,4098,6172,6431,6730,8425,10162,11410, %U A057461 12071,13151,14636,17377,18023,30594,32770,65538,77047,81858,102842,130777,137113,143503,168812,192076,262146 %N A057461 Numbers k such that x^k + x^3 + 1 is irreducible over GF(2). %C A057461 Next term is > 10^5. - _Joerg Arndt_, Apr 28 2012 %C A057461 It seems that if x^k + x^3 + 1 is irreducible and k is not a multiple of 6, then so is x^k + x^3 + x^2 + x + 1. If this is true, then no term can be congruent to 3 modulo 6. - _Jianing Song_, May 11 2021 %C A057461 Any subsequent terms are > 300000. - _Lucas A. Brown_, Nov 28 2022 %H A057461 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 40.9.3 "Irreducible trinomials of the form 1 + x^k + x^d", p. 850 %H A057461 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/irred_trinom_f2.py">Python program</a>. %H A057461 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/irred_trinom_f2.sage">Sage program</a>. %o A057461 (PARI) %o A057461 for (n=1,5000, if ( polisirreducible(Mod(1,2)*(x^n+x^3+1)), print1(n,", ") ) ); %o A057461 /* _Joerg Arndt_, Apr 28 2012 */ %o A057461 (Sage) %o A057461 P.<x> = GF(2)[] %o A057461 for n in range(10^4): %o A057461 if (x^n+x^3+1).is_irreducible(): %o A057461 print(n) # _Joerg Arndt_, Apr 28 2012 %Y A057461 Cf. A002475, A057496. %K A057461 nonn,hard %O A057461 1,2 %A A057461 _Robert G. Wilson v_, Sep 27 2000 %E A057461 a(24)-a(29) from _Robert G. Wilson v_, Aug 06 2010 %E A057461 Terms >= 4098 from _Joerg Arndt_, Apr 28 2012 %E A057461 a(47)-a(53) from _Lucas A. Brown_, Nov 28 2022