This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057468 #85 Jun 13 2022 02:27:17 %S A057468 2,3,5,17,29,31,53,59,101,277,647,1061,2381,2833,3613,3853,3929,5297, %T A057468 7417,90217,122219,173191,256199,336353,485977,591827,1059503 %N A057468 Numbers k such that 3^k - 2^k is prime. %C A057468 Some of the larger entries may only correspond to probable primes. %C A057468 The 1137- and 1352-digit values associated with the terms 2381 and 2833 have been certified prime with Primo. - _Rick L. Shepherd_, Nov 12 2002 %C A057468 Or, numbers k such that A001047(k) is prime. - _Zak Seidov_, Sep 17 2006 %C A057468 3^k - 2^k were proved prime for k = 3613, 3853, 3929, 5297, 7417 with Primo. - _David Harrison_, Jun 08 2011 %H A057468 Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=3%5En-2%5En&action=Search">PRP Records</a>. %H A057468 R. Miles, <a href="https://doi.org/10.1090/S0002-9947-2013-05829-1">Synchronization points and associated dynamical invariants</a>, Trans. Amer. Math. Soc. 365 (2013), 5503-5524. %H A057468 Primality certificates for <a href="http://oeis.hddkillers.com/A057468/">3613 to 7417</a> %t A057468 Select[Prime@ Range@ 941, PrimeQ[3^# - 2^#] &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008 and modified by _Robert G. Wilson v_, Mar 15 2017 *) %t A057468 ParallelMap[ If[ PrimeQ[3^# - 2^#], #, Nothing] &, Prime@ Range@ 941] (* _Robert G. Wilson v_, Jun 28 2017 *) %o A057468 (PARI) select(p->ispseudoprime(3^n-2^n), primes(100)) \\ _Charles R Greathouse IV_, Feb 11 2011 %Y A057468 Cf. A058765, A000043 (Mersenne primes), A001047 (3^n-2^n). %Y A057468 Subset of A000040. %K A057468 nonn,hard,nice,more %O A057468 1,1 %A A057468 _Robert G. Wilson v_, Sep 09 2000 %E A057468 a(20) = 90217 found by _Mike Oakes_, Feb 23 2001 %E A057468 Terms a(21) = 122219, a(22) = 173191, a(23) = 256199 were found by _Mike Oakes_ in 2003-2005. Corresponding numbers of decimal digits are 58314, 82634, 122238. %E A057468 a(24) = 336353 found by _Mike Oakes_, Oct 15 2007. It corresponds to a probable prime with 160482 decimal digits. %E A057468 a(25) = 485977 found by _Mike Oakes_, Sep 06 2009; it corresponds to a probable prime with 231870 digits. - _Mike Oakes_, Sep 08 2009 %E A057468 a(26) = 591827 found by _Mike Oakes_, Aug 25 2009; it corresponds to a probable prime with 282374 digits. %E A057468 a(27) = 1059503 found by _Mike Oakes_, Apr 12 2012; it corresponds to a probable prime with 505512 digits. - _Mike Oakes_, Apr 14 2012