cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370256 The number of ways in which n can be expressed as b^2 * c^3, with b and c >= 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2024

Keywords

Comments

First differs from A075802 and A112526 at n = 64.
The least number k such that a(k) = n is A005179(n)^6.
The indices of records are the sixth powers of the highly composite numbers, A002182(n)^6.

Examples

			1 = 1^2 * 1^3, so a(1) = 1.
64 = 1^2 * 4^3 = 8^2 * 1^3, so a(64) = 2.
4096 = 64^2 * 1^3 = 8^2 * 4^3 = 1^2 * 16^3, so a(4096)= 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 2)/2] - Floor[(e + 2)/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+2)\2 - (x+2)\3, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1 - X^2)*(1 - X^3)))[n], ", ")) \\ Vaclav Kotesovec, Feb 23 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A370256(n): return prod((e>>1)+1-(e+2)//3 for e in factorint(n).values()) # Chai Wah Wu, Apr 15 2025

Formula

Multiplicative with a(p^e) = A103221(e).
a(n) > 0 if and only if n is a powerful number (A001694).
a(A001694(n)) = A057523(n).
a(n^6) = A000005(n).
Sum_{k=1..n} a(k) ~ zeta(3/2) * sqrt(n) + zeta(2/3) * n^(1/3).
Dirichlet generating function: zeta(2*s)*zeta(3*s). - Vaclav Kotesovec, Feb 23 2024

A384789 The number of ways in which the n-th cubefull number can be expressed as b^3 * c^4 * d^5, with b, c and d >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

The positive values of the multiplicative function f(n) with f(p^e) = A008680(e). Or, equivalently, a(n) is the value of this function at A036966(n).

Examples

			a(12) = 2 since A036966(12) = 256 = 2^8 has 2 representations as b^3*c^4*d^5: 2^3 * 2^5 (b = d = 2, c = 1) and 4^4 (b = d = 1, c = 4).
a(38) = 3 since A036966(38) = 4096 = 2^12 has 3 representations as b^3*c^4*d^5: 2^3 * 2^4 * 2^5 (b = c = d = 2), 8^4 (b = d = 1, c = 8) and 16^3 (b = 16, c = d = 1).
		

Crossrefs

Cf. A008680, A036966, A057523 (powerful analog), A384791.

Programs

  • Mathematica
    f[p_, e_] := Floor[(1+(-1)^e)*(-1)^Floor[e/2]/8 + (e^2 + 12*e + 90)/120]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10000], # > 0 &]
  • PARI
    f(e) = floor((1+(-1)^e)*(-1)^floor(e/2)/8 + (e^2 + 12*e + 90)/120);
    list(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[, 2]; if(k == 1 || vecmin(e) > 2, print1(vecprod(apply(x -> f(x), e)), ", ")));}

Formula

a(n) >= 1.

A384790 Numbers with a record number of ways in which they can be expressed as b^2 * c^3, with b and c >= 1.

Original entry on oeis.org

1, 64, 4096, 46656, 2985984, 191102976, 2176782336, 12230590464, 46656000000, 2985984000000, 34012224000000, 191102976000000, 2176782336000000, 139314069504000000, 351298031616000000, 4001504141376000000, 22483074023424000000, 256096265048064000000, 16390160963076096000000
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2025

Keywords

Comments

Indices of records of A370256.
All the terms are powerful numbers since A370256(1) = 1 and A370256(n) = 0 if n is a nonpowerful number.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, ... (see the link for more values).

Crossrefs

Subsequence of A001694 and A025487 (i.e., of A181800).
Cf. A002182 (sixth root), A046055, A057523, A370256, A384791 (cubefull analog).

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 2)/2] - Floor[(e + 2)/3]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, sm = -1; seq = {}; Do[s1 = s[lps[[i]]]; If[s1 > sm, sm = s1; AppendTo[seq, lps[[i]]]], {i, 1, Length[lps]}]; seq]
Showing 1-3 of 3 results.