A057537 Number of ways of making change for n Euro-cents using the Euro currency.
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 41, 44, 51, 54, 61, 68, 75, 82, 89, 96, 109, 116, 129, 136, 149, 162, 175, 188, 201, 214, 236, 249, 271, 284, 306, 328, 350, 372, 394, 416, 451, 473, 508, 530, 565, 600, 635, 670, 705, 740, 793, 828
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..65536
- AFP, 500-euro note gets last print run, (2019)
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, order 88888.
Crossrefs
Cf. A001313.
Programs
-
Maple
gf:= 1/expand((1-x) * (1-x^2) * (1-x^5) * (1-x^10) * (1-x^20) * (1-x^50) * (1-x^100) * (1-x^200) * (1-x^500) * (1-x^1000) * (1-x^2000) * (1-x^5000) * (1-x^10000) * (1-x^20000) * (1-x^50000)): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..100);
-
Mathematica
f = 1/Times@@(1 - x^{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}); a[n_] := SeriesCoefficient[f, {x, 0, n}]; Table[a[n], {n, 1, 61}] (* Jean-François Alcover, Nov 28 2013, after Maple *)
-
PARI
coins(v[..])=my(x='x); prod(i=1,#v,1/(1-x^v[i])) Vec(coins(1, 2, 5, 10, 20, 50, 100, 200)+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
Formula
G.f.: 1/((1-x) * (1-x^2) * (1-x^5) * (1-x^10) * (1-x^20) * (1-x^50) * (1-x^100) * (1-x^200) * (1-x^500) * (1-x^1000) * (1-x^2000) * (1-x^5000) * (1-x^10000) * (1-x^20000) * (1-x^50000)).
Comments