This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057547 #30 Jun 01 2024 06:21:06 %S A057547 2,12,52,56,212,216,228,232,240,852,856,868,872,880,916,920,932,936, %T A057547 944,964,968,976,992,3412,3416,3428,3432,3440,3476,3480,3492,3496, %U A057547 3504,3524,3528,3536,3552,3668,3672,3684,3688,3696,3732,3736,3748,3752,3760 %N A057547 A014486-encodings of Catalan mountain ranges with no sea-level valleys, i.e., the rooted plane general trees with root degree = 1. %C A057547 This one-to-one correspondence between all rooted plane trees and one node larger, root degree = 1 trees illustrates the fact that INVERT(A000108) = LEFT(A000108). (Catalan numbers shift left under Cameron's A transformation.) %C A057547 From _Ruud H.G. van Tol_, May 13 2024: (Start) %C A057547 Sequence on a lattice: %C A057547 Tree Paths Decimal Count %C A057547 |_ 10 2 1 %C A057547 |_._ 1100 12 1 %C A057547 |_|_._ 110100 -111000 52,56 2 %C A057547 |_|_|_._ 11010100 -11110000 212-240 5 %C A057547 |_|_|_|_._ 1101010100-1111100000 852-992 14 %C A057547 ... (End) %H A057547 Ruud H.G. van Tol, <a href="/A057547/b057547.txt">Table of n, a(n) for n = 0..2055</a> %H A057547 P. J. Cameron, <a href="http://dx.doi.org/10.1016/0012-365X(89)90081-2">Some sequences of integers</a>, Discrete Math., 75 (1989), 89-102. %H A057547 P. J. Cameron, <a href="http://dx.doi.org/10.1016/S0167-5060(08)70569-7">Some sequences of integers</a>, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102. %H A057547 <a href="/index/Ro#RootedTreePlanEncodings">Index entries for encodings of plane rooted trees</a> %F A057547 a(n) = A014486(A057548(n)) and also from n > 0 onward = A079946(A014486(n)). %F A057547 a(n) = alltrees2singletrunked(A014486[n]) (see Maple code below and in A057501). %p A057547 alltrees2singletrunked := n -> pars2binexp([binexp2pars(n)]); # Just surround with extra parentheses. %o A057547 (PARI) a_rows(N) = my(a=Vec([[2]], N)); for(r=1, N-1, my(b=a[r], c=List()); foreach(b, t, for(i=1, valuation(t, 2), listput(~c, (t<<2)+(2<<i)))); a[r+1]=Vec(c)); a; \\ _Ruud H.G. van Tol_, May 25 2024 %Y A057547 Double-trunked trees: A057517. Cf. also A057548, A057549. %K A057547 nonn,base %O A057547 0,1 %A A057547 _Antti Karttunen_ Sep 07 2000