cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144625 List of triples (i,j,k) (i>=0, j>=0, k>=0) in canonical order used to convert an infinite tetrahedron of numbers to a linear sequence.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 3, 0, 0, 2, 1, 0, 1, 2, 0, 0, 3, 0, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 0, 1, 2, 0, 0, 3, 4, 0, 0, 3, 1, 0, 2, 2, 0, 1, 3, 0, 0, 4, 0, 3, 0, 1, 2, 1, 1, 1, 2, 1, 0, 3, 1, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jan 18 2009

Keywords

Comments

The triples are sorted first according to their sum, then by the value of k, then by the value of j.

Examples

			i j k
-----
0 0 0
1 0 0
0 1 0
0 0 1
2 0 0
1 1 0
0 2 0
1 0 1
0 1 1
0 0 2
3 0 0
2 1 0
1 2 0
0 3 0
2 0 1
1 1 1
0 2 1
1 0 2
0 1 2
0 0 3
4 0 0
3 1 0
2 2 0
1 3 0
0 4 0
3 0 1
2 1 1
1 2 1
0 3 1
2 0 2
1 1 2
0 2 2
1 0 3
0 1 3
0 0 4
...
		

Crossrefs

Cf. A144627-A144629 for the individual columns.
Cf. A057556 (each triple reversed).

Programs

  • Maple
    for n from 0 to 7 do
    for k from 0 to n do
    for j from 0 to n do
    for i from 0 to n do
    if i+j+k=n then lprint(i,j,k); fi;
    od: od: od: od:

A057559 Lexicographic ordering of NxNxNxN, where N={1,2,3,...}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2000

Keywords

Examples

			Flatten the list of ordered lattice points, (1,1,1,1) < (1,1,1,2) < (1,1,2,1) < ... as 1,1,1,1, 1,1,1,2, 1,1,2,1, ...
		

Crossrefs

Programs

  • Mathematica
    lexicographicLattice[{dim_,maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; Flatten@lexicographicLattice[{4,4}]
    (* by Peter J. C. Moses, Feb 10 2011 *)

Extensions

Extended by Clark Kimberling, Feb 10 2011

A057554 Lexicographic ordering of MxM, where M={0,1,2,...}.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0, 0, 3, 1, 2, 2, 1, 3, 0, 0, 4, 1, 3, 2, 2, 3, 1, 4, 0, 0, 5, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 0, 7, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 0, 8, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 9, 0, 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0, 0, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2000

Keywords

Comments

A057555 gives the lexicographic ordering of N x N, where N={1,2,3,...}.

Examples

			Flatten the ordered lattice points: (0,0) < (0,1) < (1,0) < (0,2) < (1,1) < ... as 0,0, 0,1, 1,0, 0,2, 1,1, ...
		

Crossrefs

Programs

  • Mathematica
    lexicographicLattice[{dim_,maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; Flatten@lexicographicLattice[{2,12}]-1 (* Peter J. C. Moses, Feb 10 2011 *)
  • Python
    [l for i in range(20) for k in range(i,-1,-1) for l in (i-k, k)] # Nicholas Stefan Georgescu, Oct 10 2023

A057558 Lexicographic ordering of MxMxMxM, where M={0,1,2,...}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2000

Keywords

Examples

			Flatten the list of ordered lattice points, (0,0,0,0) < (0,0,0,1) < (0,0,1,0) < ... as 0,0,0,0, 0,0,0,1, 0,0,1,0, ...
		

Crossrefs

Programs

  • Mathematica
    lexicographicLattice[{dim_,maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; Flatten@lexicographicLattice[{4,4}]-1
    (* by Peter J. C. Moses, Feb 10 2011 *)

Extensions

Extended by Clark Kimberling, Feb 10 2011
Showing 1-4 of 4 results.