cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057557 Lexicographic ordering of NxNxN, where N={1,2,3,...}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 1, 1, 4, 1, 2, 3, 1, 3, 2, 1, 4, 1, 2, 1, 3, 2, 2, 2, 2, 3, 1, 3, 1, 2, 3, 2, 1, 4, 1, 1, 1, 1, 5, 1, 2, 4, 1, 3, 3, 1, 4, 2, 1, 5, 1, 2, 1, 4, 2, 2, 3, 2, 3, 2, 2, 4, 1, 3, 1, 3, 3, 2, 2, 3, 3, 1, 4, 1, 2, 4, 2, 1, 5, 1, 1, 1, 1, 6, 1, 2, 5, 1, 3, 4, 1, 4, 3, 1, 5, 2, 1, 6, 1, 2, 1, 5, 2, 2, 4, 2, 3, 3, 2, 4, 2, 2, 5, 1, 3, 1, 4, 3, 2, 3, 3, 3, 2, 3, 4, 1, 4, 1, 3, 4, 2, 2, 4, 3, 1, 5, 1, 2, 5, 2, 1, 6, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 07 2000

Keywords

Examples

			Flatten the list of ordered lattice points, (1,1,1) < (1,1,2) < (1,2,1) < ..., to 1,1,1, 1,1,2, 1,2,1, ...
		

Crossrefs

A057555: ordering of N^2
A057559: ordering of N^4
A186006: ordering of N^5
A186003: distances to the plane x=0
A186004: distances to the plane y=0
A186005: distances to the plane z=0

Programs

  • Mathematica
    lexicographicLattice[{dim_,maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; Flatten@lexicographicLattice[{3,6}]
    (* By Peter J. C. Moses, Feb 10 2011 *)

Extensions

Corrected and extended by Clark Kimberling,, Feb 10 2011.