A057559 Lexicographic ordering of NxNxNxN, where N={1,2,3,...}.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1, 1
Offset: 1
Keywords
Examples
Flatten the list of ordered lattice points, (1,1,1,1) < (1,1,1,2) < (1,1,2,1) < ... as 1,1,1,1, 1,1,1,2, 1,1,2,1, ...
Programs
-
Mathematica
lexicographicLattice[{dim_,maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; Flatten@lexicographicLattice[{4,4}] (* by Peter J. C. Moses, Feb 10 2011 *)
Extensions
Extended by Clark Kimberling, Feb 10 2011