A057566 Number of collinear triples in a 3 X n rectangular grid.
0, 1, 2, 8, 20, 43, 78, 130, 200, 293, 410, 556, 732, 943, 1190, 1478, 1808, 2185, 2610, 3088, 3620, 4211, 4862, 5578, 6360, 7213, 8138, 9140, 10220, 11383, 12630, 13966, 15392, 16913, 18530, 20248, 22068, 23995, 26030, 28178, 30440, 32821, 35322
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 2, 8, 20}, 50] (* Paolo Xausa, Feb 22 2024 *)
Formula
Conjecture: a(n) = 5*floor((2n^3 - 3n^2 - n)/24) + floor((2(n-1)^3 - 3(n-1)^2 - (n-1))/24) + n, which fits all of the listed terms.
From R. J. Mathar, May 23 2010: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) = n^3/2 - n^2 + n + (1-(-1)^n)/4.
G.f.: x*(1 - x + 4*x^2 + 2*x^3)/((1+x)*(x-1)^4). (End)