cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057571 Area under Dyck paths.

Original entry on oeis.org

1, 6, 19, 58, 146, 380, 883, 2138, 4774, 11092, 24190, 54724, 117508, 260920, 554179, 1213690, 2557022, 5541092, 11601610, 24930860, 51942076, 110861896, 230053614, 488253348, 1009853116, 2133122760, 4399720348, 9256078408
Offset: 1

Views

Author

Cyril Banderier, Oct 04 2000

Keywords

Comments

a(n) is 2*the sum of the areas under all Dyck paths of length n.
The Dyck paths considered in this sequence always have height >= 0 but do not need to finish at height = 0. n is the total number of steps.

Programs

  • Mathematica
    f[x_] := 2*(8*x^2+4*x-1-Sqrt[1-4*x^2]*(4*x^2+4*x-1)) / (4*(1-2*x)^2*(1+2*x)*x^2); CoefficientList[ Series[ f[x], {x, 0, 27}], x] (* Jean-François Alcover, Dec 21 2011, after area sum g.f. multiplied by 2 *)

Formula

G.f.: 2*x*(8*x^2+4*x-1-sqrt(1-4*x^2)*(4*x^2+4*x-1))/(4*(1-2*x)^2*(1+2*x)*x^2). - corrected by Vaclav Kotesovec, Sep 11 2013
Recurrence: (n+1)*(4*n^3 - 28*n^2 + 55*n - 27)*a(n) = 2*(8*n^3 - 48*n^2 + 52*n + 27)*a(n-1) + 4*(2*n - 1)*(4*n^3 - 24*n^2 + 29*n + 18)*a(n-2) - 16*(2*n - 3)*(2*n^2 - 8*n - 1)*a(n-3) - 16*(n-3)*(4*n^3 - 16*n^2 + 11*n + 4)*a(n-4). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 3*n*2^(n-1) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Sep 11 2013