A057571 Area under Dyck paths.
1, 6, 19, 58, 146, 380, 883, 2138, 4774, 11092, 24190, 54724, 117508, 260920, 554179, 1213690, 2557022, 5541092, 11601610, 24930860, 51942076, 110861896, 230053614, 488253348, 1009853116, 2133122760, 4399720348, 9256078408
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..400
- C. Banderier, Analytic combinatorics of random walks and planar maps, PhD Thesis, 2001.
Programs
-
Mathematica
f[x_] := 2*(8*x^2+4*x-1-Sqrt[1-4*x^2]*(4*x^2+4*x-1)) / (4*(1-2*x)^2*(1+2*x)*x^2); CoefficientList[ Series[ f[x], {x, 0, 27}], x] (* Jean-François Alcover, Dec 21 2011, after area sum g.f. multiplied by 2 *)
Formula
G.f.: 2*x*(8*x^2+4*x-1-sqrt(1-4*x^2)*(4*x^2+4*x-1))/(4*(1-2*x)^2*(1+2*x)*x^2). - corrected by Vaclav Kotesovec, Sep 11 2013
Recurrence: (n+1)*(4*n^3 - 28*n^2 + 55*n - 27)*a(n) = 2*(8*n^3 - 48*n^2 + 52*n + 27)*a(n-1) + 4*(2*n - 1)*(4*n^3 - 24*n^2 + 29*n + 18)*a(n-2) - 16*(2*n - 3)*(2*n^2 - 8*n - 1)*a(n-3) - 16*(n-3)*(4*n^3 - 16*n^2 + 11*n + 4)*a(n-4). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 3*n*2^(n-1) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Sep 11 2013
Comments