cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057585 Area under Motzkin excursions.

Original entry on oeis.org

0, 1, 4, 16, 56, 190, 624, 2014, 6412, 20219, 63284, 196938, 610052, 1882717, 5792528, 17776102, 54433100, 166374109, 507710420, 1547195902, 4709218604, 14318240578, 43493134160, 132003957436, 400337992056, 1213314272395, 3674980475284, 11124919273160
Offset: 1

Views

Author

Cyril Banderier, Oct 04 2000

Keywords

Comments

a(n) is the sum of areas under all Motzkin excursions of length n (nonnegative walks beginning and ending in 0, with jumps -1,0,+1).

Crossrefs

Programs

  • Maple
    G:= (x^2+2*x-1+(-x+1)*sqrt((x+1)*(1-3*x)))/(2*(3*x-1)*(x+1)*x^2): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=1..26); # Emeric Deutsch, Apr 08 2007
  • Mathematica
    f[x_] := (x^2+2*x-1+(-x+1)*Sqrt[(x+1)*(1-3*x)]) / (2*(3*x-1)*(x+1)*x^2); Drop[ CoefficientList[ Series[ f[x], {x, 0, 26}], x], 1] (* Jean-François Alcover, Dec 21 2011, from g.f. *)

Formula

G.f.: (x^2 + 2*x - 1 + (-x+1)*sqrt((x+1)*(1-3*x)))/(2*(3*x-1)*(x+1)*x^2).
Recurrence: (n-2)*(n+2)*a(n) = (n+1)*(4*n-7)*a(n-1) + (2*n^2 - 3*n - 8)*a(n-2) - 3*(n-1)*(4*n-5)*a(n-3) - 9*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ 3^(n+1)/4 * (1-2*sqrt(3)/sqrt(Pi*n)). - Vaclav Kotesovec, Sep 11 2013