cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057594 Triangle T(n,k) giving floor( (2*p mod n-1)/2), where p = period of sequence k^i (i=0,1,2,...) mod n (n >= 2, 2<=k<=n).

This page as a plain text file.
%I A057594 #7 Feb 04 2015 04:26:25
%S A057594 0,0,0,1,0,1,0,0,0,1,2,1,1,2,1,0,0,0,0,2,1,1,2,1,2,1,2,1,2,1,3,2,1,3,
%T A057594 2,1,4,4,2,1,1,4,4,2,1,0,0,0,0,0,0,0,0,2,1,2,2,1,2,1,2,2,1,1,2,1,0,3,
%U A057594 0,4,0,0,4,3,0,0,2,1
%N A057594 Triangle T(n,k) giving floor( (2*p mod n-1)/2), where p = period of sequence k^i (i=0,1,2,...) mod n (n >= 2, 2<=k<=n).
%t A057594 period[lst_] := Module[{n, i, j}, n = Length[lst]; For[j = 2, j <= n, j++, For[i = 1, i < j, i++, If[lst[[i]] == lst[[j]], Return[{i - 1, j - i}]]]]; Return[{0, 0}]]; T[n_, k_] := Module[{t, p}, t = Table[PowerMod[k, i, n], {i, 0, 2 n}]; p = period[t][[2]]; Floor[Mod[2 p, n - 1]/2]]; Table[T[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Feb 04 2015 *)
%Y A057594 Cf. A057593, A057595.
%K A057594 nonn,tabl
%O A057594 2,11
%A A057594 _Gottfried Helms_, Oct 05 2000