cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057622 Initial prime in first sequence of n consecutive primes congruent to 5 modulo 6.

Original entry on oeis.org

5, 23, 47, 251, 1889, 7793, 43451, 243161, 726893, 759821, 1820111, 1820111, 10141499, 19725473, 19725473, 136209239, 400414121, 400414121, 489144599, 489144599, 766319189, 766319189, 21549657539, 21549657539, 21549657539, 140432294381, 140432294381, 437339303279, 1871100711071, 3258583681877
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2000

Keywords

Comments

Same as A057621 except for a(1). See A057620 for primes congruent to 1 (mod 6). See A055626 for the variant "exactly n", which is an upper bound, cf. formula. - M. F. Hasler, Sep 03 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Examples

			a(12) = 1820111 because this number is the first in a sequence of 12 consecutive primes all of the form 6n + 5.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", A4

Crossrefs

Programs

  • Mathematica
    p = 0; Do[a = Table[-1, {n}]; k = Max[1, p]; While[Union@ a != {5}, k = NextPrime@ k; a = Take[AppendTo[a, Mod[k, 6]], -n]]; p = NestList[NextPrime[#, -1] &, k, n]; Print[p[[-2]]]; p = p[[-1]], {n, 18}] (* Robert G. Wilson v, updated by Michael De Vlieger, Sep 03 2016 *)
    Table[k = 1; While[Total@ Boole@ Map[Mod[#, 6] == 5 &, NestList[NextPrime, Prime@ k, n - 1]] != n, k++]; Prime@ k, {n, 12}] (* Michael De Vlieger, Sep 03 2016 *)

Formula

a(n) = A000040(A247967(n)). a(n) = min { A055626(k); k >= n }. - M. F. Hasler, Sep 03 2016

Extensions

More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 30 2006
Three lines of data (derived from J.K.Andersen's web page) completed by M. F. Hasler, Sep 02 2016