This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057643 #30 Jun 30 2022 12:47:15 %S A057643 2,6,4,30,6,84,8,90,20,66,12,5460,14,120,48,1530,18,7980,20,2310,88, %T A057643 276,24,81900,78,378,140,3480,30,114576,32,16830,204,630,72,3838380, %U A057643 38,780,280,284130,42,397320,44,4140,5520,1128,48,9746100,200,14586,468 %N A057643 Least common multiple of all (k+1)'s, where the k's are the positive divisors of n. %C A057643 a(n) is a divisor of A020696(n). - _Ivan Neretin_, May 27 2015 %H A057643 Carl R. White, <a href="/A057643/b057643.txt">Table of n, a(n) for n = 1..10000</a> %e A057643 Since the positive divisors of 6 are 1, 2, 3 and 6, a(6) = LCM(1+1,2+1,3+1,6+1) = LCM(2,3,4,7) = 84. %p A057643 f:= n -> ilcm(op(map(`+`,numtheory:-divisors(n),1))); %p A057643 seq(f(n),n=1..100); # _Robert Israel_, Jul 24 2014 %t A057643 a057643[n_Integer] := Apply[LCM, Map[# + 1 &, Divisors[n]]]; Table[a057643[n], {n, 10000}] (* _Michael De Vlieger_, Jul 19 2014 *) %o A057643 (PARI) a(n)=lcm(apply(d->d+1,divisors(n))) \\ _Charles R Greathouse IV_, Feb 14 2013 %o A057643 (Python) %o A057643 from math import lcm %o A057643 from sympy import divisors %o A057643 def A057643(n): return lcm(*(d+1 for d in divisors(n,generator=True))) # _Chai Wah Wu_, Jun 30 2022 %Y A057643 Cf. A119250. %Y A057643 Cf. A020696 (product instead of LCM). %K A057643 nonn %O A057643 1,1 %A A057643 _Leroy Quet_, Oct 11 2000