cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057650 Second step in Goodstein sequences, i.e., g(4) if g(2)=n: (first step) write g(2)=n in hereditary representation base 2, bump to base 3, then subtract 1 to produce g(3)=A056004(n), then (second step) write g(3) in hereditary representation base 3, bump to base 4, then subtract 1 to produce g(4).

Original entry on oeis.org

1, 3, 41, 255, 257, 259, 553, 1023, 1025, 1027, 1065, 1279, 1281, 1283, 50973998591214355139406377, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
Offset: 2

Views

Author

Henry Bottomley, Oct 13 2000

Keywords

Examples

			a(12)=1065 since with g(2) = 12 = 2^(2+1) + 2^2, we get g(3) = 3^(3+1) + 3^3 - 1 = 107 = 3^(3+1) + 2*3^2 + 2*3 + 2 and g(4) = 4^(4+1) + 2*4^2 + 2*4 + 2 - 1 = 1065.
a(17) = 4^(4^4) - 1, with g(2) = 17 = 2^(2^2) + 1 and g(3) = 3^(3^3).
Similarly a(18) = 4^(4^4) + 1, with g(2) = 18 = 2^(2^2) + 2 and g(3) = 3^(3^3) + 2.
		

Crossrefs

Programs

  • Haskell
    -- See Link