cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057684 Trajectory of 13 under the '13x+1' map.

Original entry on oeis.org

13, 170, 85, 17, 222, 111, 37, 482, 241, 3134, 1567, 20372, 10186, 5093, 463, 6020, 3010, 1505, 301, 43, 560, 280, 140, 70, 35, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7, 1, 14, 7
Offset: 0

Views

Author

N. J. A. Sloane, Oct 20 2000

Keywords

Comments

The 'Px+1 map': if x is divisible by any prime < P then divide out these primes one at a time starting with the smallest; otherwise multiply x by P and add 1.

Crossrefs

Programs

  • Maple
    with(numtheory): a := proc(n,S,Q) option remember: local k; if n=0 then RETURN(S); fi: for k from 1 to Q do if a(n-1,S,Q) mod ithprime(k) = 0 then RETURN(a(n-1,S,Q)/ithprime(k)); fi: od: RETURN(ithprime(Q+1)*a(n-1,S,Q)+1) end; # run with S=13 and Q=5.
  • Mathematica
    a[n_, S_, Q_] := a[n, S, Q] = Module[{k}, If[n == 0, S, For[k = 1, k <= Q, k++, If[Mod[a[n-1, S, Q], Prime[k]] == 0, Return[a[n-1, S, Q]/Prime[k]]] ]; Prime[Q+1]*a[n-1, S, Q] + 1]];
    Table[a[n, 13, 5], {n, 0, 60}] (* Jean-François Alcover, Jul 13 2016, adapted from Maple *)