This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057690 #32 Dec 12 2023 08:25:31 %S A057690 3,3,4,4,3,4,4,5,4,6,3,4,4,6,5,5,3,4,6,3,6,5,5,4,4,5,6,4,4,8,5,4,5,5, %T A057690 5,3,4,6,4,6,4,8,3,5,6,4,7,5,4,5,7,4,6,4,6,6,6,3,12,4,5,5,6,3,4,4,4,5, %U A057690 5,4,7,6,4,5,9,5,3,4,4,6,3,8,4,6,5,6,3,5,6,6,8,5,5,6,7,5,5,4,3,4,5,5,5,5,4 %N A057690 Length of cycle in trajectory of P under the 'Px+1' map, where P = n-th prime, or -1 if trajectory does not cycle. %C A057690 See A057684 for definition. %C A057690 Note that not all cycles for the iteration starting with p contain the number 1; a(60), for the prime 281, is the first example of this. Its iterates are: 281, 78962, 39481, 3037, 853398, 426699, 142233, 47411, 6773, 521, 146402, 73201, 1031, 289712, 144856, 72428, 36214, 18107, 953, 267794, 133897, with the last 12 terms cycling. Another example is provided by 2543, the 372nd prime. - _T. D. Noe_, Apr 02 2008 %H A057690 Michel Marcus, <a href="/A057690/b057690.txt">Table of n, a(n) for n = 2..10000</a> %F A057690 a(n) = A023514(n)+1 if the cycle contains the number 1. - _Jon Maiga_, Jan 12 2021 %e A057690 For n=4, P=7: trajectory of 7 is 7, 50, 25, 5, 1, 8, 4, 2, 1, 8, 4, 2, 1, 8, 4, 2, 1, ..., which has maximal term 50, cycle length 4 and there are 4 terms before it enters the cycle. %t A057690 Px1[p_,n_]:=Catch[For[i=1,i<PrimePi[p],i++,If[Divisible[n,Prime[i]],Throw[n/Prime[i]]]];p*n+1]; %t A057690 Module[{nmax=100,m},Table[Length[m=NestWhileList[Px1[Prime[n],#]&,Prime[n],UnsameQ,All]]-FirstPosition[m,Last[m]][[1]],{n,2,nmax}]] (* _Paolo Xausa_, Dec 11 2023 *) %o A057690 (PARI) f(m, p) = {forprime(q=2, precprime(p-1), if (! (m % q), return (m/q));); m*p+1;} %o A057690 a(n) = {my(p=prime(n), x=p, list = List()); listput(list, x); while (1, x = f(x, p); for (i=1, #list, if (x == list[i], return (#list - i + 1));); listput(list, x););} \\ _Michel Marcus_, Jan 12 2021 %o A057690 (Python) %o A057690 from sympy import prime, primerange %o A057690 def a(n): %o A057690 P = prime(n) %o A057690 x, plst, traj, seen = P, list(primerange(2, P)), [], set() %o A057690 while x not in seen: %o A057690 traj.append(x) %o A057690 seen.add(x) %o A057690 x = next((x//p for p in plst if x%p == 0), P*x+1) %o A057690 return len(traj) - traj.index(x) %o A057690 print([a(n) for n in range(2, 107)]) # _Michael S. Branicky_, Dec 11 2023 %Y A057690 Cf. A057446, A057216, A057522, A057534, A057614. See also A033478, A057688, A057684, A057685, A057686, A057687, A057689, A057691. %Y A057690 Cf. A023514. %K A057690 nonn,nice,easy %O A057690 2,1 %A A057690 _N. J. A. Sloane_, Oct 20 2000 %E A057690 More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2000 %E A057690 Corrected by _T. D. Noe_, Apr 02 2008