This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057728 #32 Jan 15 2022 14:55:00 %S A057728 1,1,1,1,2,1,1,4,2,1,1,8,4,2,1,1,16,8,4,2,1,1,32,16,8,4,2,1,1,64,32, %T A057728 16,8,4,2,1,1,128,64,32,16,8,4,2,1,1,256,128,64,32,16,8,4,2,1,1,512, %U A057728 256,128,64,32,16,8,4,2,1,1,1024,512,256,128,64,32,16,8,4,2,1,1,2048,1024,512,256,128,64,32,16,8,4,2,1 %N A057728 A triangular table of decreasing powers of two (with first column all ones). %C A057728 First differences of sequence A023758. %C A057728 A023758 is the sequence of partial sums of a(n) with row sums A000337. %C A057728 2^A004736(n) is a sequence closely related to a(n). %C A057728 T(n,k) is the number of length n binary words having an odd number of 0's with exactly k 1's following the last 0, n >= 1, 0 <= k <= n - 1. - _Geoffrey Critzer_, Jan 28 2014 %H A057728 Reinhard Zumkeller, <a href="/A057728/b057728.txt">Rows n = 1..100 of table, flattened</a> %F A057728 G.f.: (x - x^2)/((1 - 2*x)*(1 - y*x)). - _Geoffrey Critzer_, Jan 28 2014 [This produces the triangle shown by _Mats Granvik_ in example section. - _Franck Maminirina Ramaharo_, Jan 09 2019] %F A057728 From _Franck Maminirina Ramaharo_, Jan 09 2019: (Start) %F A057728 G.f.: x*(1 - 2*x + y*x^2)/((1 - x)*(1 - 2*x)*(1 - x*y)). %F A057728 E.g.f.: (exp(2*x)*y - 2*exp(x*y))/(4 - 2*y) + exp(x) - 1/2. (End) %e A057728 Triangle starts: %e A057728 1, %e A057728 1, 1, %e A057728 1, 2, 1, %e A057728 1, 4, 2, 1, %e A057728 1, 8, 4, 2, 1, %e A057728 1, 16, 8, 4, 2, 1, %e A057728 1, 32, 16, 8, 4, 2, 1, %e A057728 1, 64, 32, 16, 8, 4, 2, 1, %e A057728 1, 128, 64, 32, 16, 8, 4, 2, 1, %e A057728 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, %e A057728 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, %e A057728 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, %e A057728 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, %e A057728 ... - _Joerg Arndt_, May 04 2014 %e A057728 When viewed as a triangular array, row 8 of A023758 is 128 192 224 240 248 252 254 255 so row 8 here is 1 64 32 16 8 4 2 1 %e A057728 From _Mats Granvik_, Jan 19 2009: (Start) %e A057728 Except for the first term the table can also be formatted as: %e A057728 1, %e A057728 1, 1, %e A057728 2, 1, 1, %e A057728 4, 2, 1, 1, %e A057728 8, 4, 2, 1, 1, %e A057728 16, 8, 4, 2, 1, 1, %e A057728 ... %e A057728 (End) %t A057728 nn=10;Map[Select[#,#>0&]&,CoefficientList[Series[(x-x^2)/(1-2x)/(1-y x),{x,0,nn}],{x,y}]]//Grid (* _Geoffrey Critzer_, Jan 28 2014 *) %t A057728 Module[{nn=12,ts},ts=2^Range[0,nn];Table[Join[{1},Reverse[Take[ts,n]]],{n,0,nn}]]//Flatten (* _Harvey P. Dale_, Jan 15 2022 *) %o A057728 (Haskell) %o A057728 a057728 n k = a057728_tabl !! (n-1) !! (k-1) %o A057728 a057728_row n = a057728_tabl !! (n-1) %o A057728 a057728_tabl = iterate %o A057728 (\row -> zipWith (+) (row ++ [0]) ([0] ++ tail row ++ [1])) [1] %o A057728 -- _Reinhard Zumkeller_, Aug 08 2013 %o A057728 (Maxima) %o A057728 T(n, k) := if k = 0 then 1 else 2^(n - k - 1)$ %o A057728 create_list(T(n, k), n, 0, 12, k, 0, n - 1); /* _Franck Maminirina Ramaharo_, Jan 09 2019 */ %Y A057728 Cf. A000079, A004736, A023758 and A000337. %Y A057728 Cf. A155038 (essentially the same as this sequence). [_Mats Granvik_, Jan 19 2009] %K A057728 base,easy,nonn,tabl %O A057728 1,5 %A A057728 _Alford Arnold_, Oct 29 2000 %E A057728 More terms from Larry Reeves (larryr(AT)acm.org), Oct 30 2000