cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057749 Prime degrees of absolutely reducible trinomials: primes p such that x^p + x^k + 1 is reducible over GF(2) for all k, p>k>0.

Original entry on oeis.org

13, 19, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 311, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557, 563, 571
Offset: 1

Views

Author

Robert G. Wilson v, Oct 30 2000

Keywords

Programs

  • Mathematica
    Do[ k = 1; While[ ToString[ Factor[ x^Prime[ n ] + x^k + 1, Modulus -> 2 ] ] != ToString[ x^Prime[ n ] + x^k + 1 ] && k < Prime[ n ], k++ ]; If[ k == Prime[ n ], Print[ Prime[ n ] ] ], {n, 1, 144} ]
  • PARI
    lista(nn) = {forprime(p=2, nn, ok = 1; for (k=1, p-1, if (polisirreducible(Mod(1,2)*(x^p + x^k + 1)), ok = 0; break);); if (ok, print1(p, ", ")););}