A057764 Triangle T(n,k) = number of nonzero elements of multiplicative order k in Galois field GF(2^n) (n >= 1, 1 <= k <= 2^n-1).
1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
Offset: 1
Examples
Table begins: 1; 1, 0, 2; 1, 0, 0, 0, 0, 0, 6; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..16369 (rows 1 to 13, flattened)
Programs
-
Magma
{* Order(g) : g in GF(2^6) | g ne 0 *};
-
Maple
f:= proc(n,k) if 2^n-1 mod k = 0 then numtheory:-phi(k) else 0 fi end proc: seq(seq(f(n,k),k=1..2^n-1), n=1..10); # Robert Israel, Jul 21 2016
-
Mathematica
T[n_, k_] := If[Divisible[2^n - 1, k], EulerPhi[k], 0]; Table[T[n, k], {n, 1, 10}, {k, 1, 2^n - 1}] // Flatten (* Jean-François Alcover, Feb 07 2023, after Robert Israel *)
Formula
Extensions
T(6,21) corrected by Robert Israel, Jul 21 2016