cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057764 Triangle T(n,k) = number of nonzero elements of multiplicative order k in Galois field GF(2^n) (n >= 1, 1 <= k <= 2^n-1).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 1, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2000

Keywords

Examples

			Table begins:
  1;
  1, 0, 2;
  1, 0, 0, 0, 0, 0, 6;
  ...
		

Crossrefs

Programs

  • Magma
    {* Order(g) : g in GF(2^6) | g ne 0 *};
  • Maple
    f:= proc(n,k) if 2^n-1 mod k = 0 then numtheory:-phi(k) else 0 fi end proc:
    seq(seq(f(n,k),k=1..2^n-1), n=1..10); # Robert Israel, Jul 21 2016
  • Mathematica
    T[n_, k_] := If[Divisible[2^n - 1, k], EulerPhi[k], 0];
    Table[T[n, k], {n, 1, 10}, {k, 1, 2^n - 1}] // Flatten (* Jean-François Alcover, Feb 07 2023, after Robert Israel *)

Formula

From Robert Israel, Jul 21 2016: (Start)
T(n,k) = A000010(k) if k is a divisor of 2^n-1, otherwise 0.
Sum_{k=1..2^n-1} T(n,k) = 2^n-1 = A000225(n).
G.f. as triangle: g(x,y) = Sum_{j>=0} x^A002326(j)*A000010(2j+1)*y^(2j+1)/(1-x^A002326(j)). (End)

Extensions

T(6,21) corrected by Robert Israel, Jul 21 2016