This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057773 #39 Mar 14 2025 04:34:45 %S A057773 0,1,3,4,5,7,11,12,13,15,16,18,21,22,23,25,26,28,29,30,33,34,35,38,43, %T A057773 45,46,47,49,53,54,55,58,59,61,62,64,65,66,68,69,71,72,78,80,81,82,83, %U A057773 84,86,89,90,94,95,103,104,106,107,109,112,113,115,116,117,120,122,123 %N A057773 a(n) = Sum_{i=1..n} nu_2(prime(i) - 1) where nu_2(m) = exponent of highest power of 2 dividing m. %C A057773 Exponent of highest power of 2 dividing Euler phi of primorials. %C A057773 Conjecture: a(n) ~ 2n. - _Charles R Greathouse IV_, Jun 02 2015 %C A057773 The conjecture is true. See the comment in A023506 about the asymptotic distribution of nu_2(prime(i) - 1). - _Amiram Eldar_, Mar 14 2025 %H A057773 Charles R Greathouse IV, <a href="/A057773/b057773.txt">Table of n, a(n) for n = 1..10000</a> %F A057773 a(n) = A007814(A000010(A002110(n))). %e A057773 For n = 6, the 6th primorial is 30030, phi(30030) = 5760 = 2^7 * 3^2 * 5, so a(6) = 7. %p A057773 a:= proc(n) option remember; `if`(n<2, 0, %p A057773 a(n-1)+padic[ordp](ithprime(n)-1, 2)) %p A057773 end: %p A057773 seq(a(n), n=1..80); # _Alois P. Heinz_, Jan 01 2023 %t A057773 Table[IntegerExponent[EulerPhi[Product[Prime[i], {i, n}]], 2], {n, 110}] (* _Jamie Morken_, Oct 13 2023 *) %o A057773 (PARI) a(n) = sum(k=1,n, valuation(prime(k)-1, 2)); \\ _Michel Marcus_, May 30 2015 %o A057773 (PARI) a(n) = valuation(eulerphi(prod(k=1,n, prime(k))), 2); \\ _Michel Marcus_, May 30 2015 %o A057773 (PARI) first(n)=my(p=primes(n),s); vector(#p,i,s+=valuation(p[i]-1,2)) \\ _Charles R Greathouse IV_, Jun 02 2015 %Y A057773 Cf. A007814, A000010, A002110. %Y A057773 Partial sums of A023506. %K A057773 nonn %O A057773 1,3 %A A057773 _Labos Elemer_, Nov 02 2000