This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057778 #53 May 26 2020 15:26:33 %S A057778 1,1,1,5,1,3,3,5,1,15,13,9,3,5,7,5,1,9,3,11,7,11,25,45,45,5,7,15,13, %T A057778 23,3,35,43,9,75,59,3,15,15,5,27,3,9,9,15,35,19,27,15,23,7,17,7,51,49, %U A057778 5,27,29,99,27,31,53,105,9,25,9,3,9,31,23,39,39,127,23,67,5,93,29,15,249 %N A057778 a(n) is the least odd k such that k*2^n + 1 is prime. %C A057778 There are no SierpiĆski numbers in the sequence. See A076336. - _Thomas Ordowski_, Aug 13 2017 %C A057778 Conjecture: for n > 0, a(n) = k < 2^n, so k*2^n + 1 is a Proth prime A080076. - _Thomas Ordowski_, Apr 13 2019 %H A057778 T. D. Noe, <a href="/A057778/b057778.txt">Table of n, a(n) for n = 0..1000</a> %H A057778 Poo-Sung Park, <a href="https://arxiv.org/abs/2002.09908">Multiplicative functions with f(p + q - n_0) = f(p) + f(q) - f(n_0)</a>, arXiv:2002.09908 [math.NT], 2020. %H A057778 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %F A057778 a(n) = Min{k: 1+2^n*k is prime and k is odd}. %F A057778 a(n) << 19^n by Xylouris's improvement to Linnik's theorem. - _Charles R Greathouse IV_, Dec 10 2013 %F A057778 Conjecture: a(n) = O(n*log(n)). - _Thomas Ordowski_, Oct 16 2014 %e A057778 For n = 10, the first primes in the 1024k + 1 arithmetic progression occur at k = 12, 13, 15, 18, 19, ...; 13 is the first odd number, so a(10)=13, while A035050(10)=12. The corresponding primes are 12289 and 13313. %e A057778 For n = 79, the first primes in the (2^79)k + 1 = 604462909807314587353088k + 1 progression occur at k = 36, 44, 104, 249, 296, 299, so a(79)=249, the first odd number, while A035050(79)=36. The two primes arising are 21760664753063325144711169 and 150511264542021332250918913, respectively. %t A057778 Table[k = 1; While[! PrimeQ[k 2^n + 1], k += 2]; k, {n, 0, 80}] (* _Michael De Vlieger_, Jul 04 2016 *) %o A057778 (PARI) a(n) = k=1; while(!isprime(k*2^n+1), k+=2); k; \\ _Michel Marcus_, Dec 10 2013 %Y A057778 Terms are not necessarily in A035050. %Y A057778 Cf. A006093, A035050, A076336, A080076 A085427, A126717. %K A057778 nonn %O A057778 0,4 %A A057778 _Labos Elemer_, Nov 02 2000