A057812 Numbers k such that pi(k) is odd.
2, 5, 6, 11, 12, 17, 18, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 41, 42, 47, 48, 49, 50, 51, 52, 59, 60, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 83, 84, 85, 86, 87, 88, 97, 98, 99, 100, 103, 104, 105, 106, 109, 110, 111, 112, 127, 128, 129
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Ping Ngai Chung and Shiyu Li, On the residue classes of π(n) modulo t, INTEGERS: Electronic Journal of Combinatorial Number Theory 13 (2013), A79.
Programs
-
Mathematica
Position[Accumulate[Table[If[PrimeQ[n],1,0],{n,150}]],?OddQ]//Flatten (* _Harvey P. Dale, Jan 30 2019 *)
-
PARI
is(n)=primepi(n)%2 \\ Charles R Greathouse IV, Dec 19 2014
Formula
Chang & Li show that a(n) < 64n + o(1), and a(n) < 8n + o(1) under the Hardy-Littlewood prime tuples conjecture. - Charles R Greathouse IV, Dec 19 2014