A057872 A version of the Chebyshev function theta(n): a(n) = round(Sum_{primes p <= n } log(p)).
0, 0, 1, 2, 2, 3, 3, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 13, 13, 16, 16, 16, 16, 19, 19, 19, 19, 19, 19, 23, 23, 26, 26, 26, 26, 26, 26, 30, 30, 30, 30, 33, 33, 37, 37, 37, 37, 41, 41, 41, 41, 41, 41, 45, 45, 45, 45, 45, 45, 49, 49, 53, 53, 53, 53, 53, 53, 57, 57, 57, 57, 62, 62, 66, 66, 66, 66
Offset: 0
Keywords
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 340.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VII.35, p. 267.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Programs
-
PARI
v=List(); t=0; for(n=0, 100, if(isprime(n), t+=log(n)); listput(v, round(t))); Vec(v) \\ Charles R Greathouse IV, Sep 23 2012
Formula
theta(n) = log(A034386(n)).
a(n) ~ n, a statement equivalent to the Prime Number Theorem. - Charles R Greathouse IV, Sep 23 2012
Comments