A057898 Largest number such that n = m^a(n) - a(n) with m a positive integer; i.e., where (n + a(n))^(1/a(n)) is a positive integer.
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(5) = 3 since 5 = 2^3 - 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 200: # for a(1)..a(N) V:= Vector(N,1): for k from 2 while 2^k-k <= N do for m from 2 do v:= m^k-k; if v > N then break fi; V[v]:= k; od; od: convert(V,list); # Robert Israel, Sep 04 2020
Comments