cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057912 Numbers k such that 3*2^k - 5 is prime.

This page as a plain text file.
%I A057912 #24 Jul 30 2023 09:44:31
%S A057912 2,3,4,7,9,10,13,15,25,31,34,48,52,64,109,145,162,204,207,231,271,348,
%T A057912 444,553,559,1504,1708,3048,3970,4423,4668,5737,5877,6130,8584,10663,
%U A057912 12517,16591,18450,19362,22291,34468,36637,52212,59040,130279,236511,392260,496411,536868,565024,662703,908005
%N A057912 Numbers k such that 3*2^k - 5 is prime.
%C A057912 a(44) > 44233. - _Jinyuan Wang_, Feb 02 2020
%C A057912 a(54) > 1000000 - _Jon Grantham_, Jul 30 2023
%H A057912 Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.
%t A057912 Do[ If[ PrimeQ[ 3*2^n - 5 ], Print[ n ] ], {n, 1, 3000} ]
%o A057912 (PARI) is(n)=ispseudoprime(3*2^n-5) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y A057912 Cf. A057913 (3*2^k + 5 is prime).
%Y A057912 Cf. A048488 (3*2^k - 5, but with different offset).
%K A057912 nonn,more
%O A057912 1,1
%A A057912 _Robert G. Wilson v_, Nov 16 2000
%E A057912 a(36)-a(41) from _Vincenzo Librandi_, Oct 10 2013
%E A057912 a(42)-a(43) from _Jinyuan Wang_, Feb 02 2020
%E A057912 a(44)-a(45) from _Michael S. Branicky_, May 20 2023
%E A057912 a(46)-a(53) from _Jon Grantham_, Jul 30 2023