This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A057949 #23 May 27 2021 17:16:19 %S A057949 441,693,1089,1197,1449,1617,1881,1953,2205,2277,2541,2709,2793,2961, %T A057949 3069,3249,3381,3465,3717,3933,3969,4221,4257,4389,4473,4557,4653, %U A057949 4761,4977,5229,5301,5313,5445,5733,5841,5929,5985,6237,6321,6417,6489,6633 %N A057949 Numbers with more than one factorization into S-primes. See A054520 and A057948 for definition. %C A057949 Numbers with k >= 4 prime factors (with multiplicity) that are congruent to 3 mod 4, no k-1 of which are equal. - _Charlie Neder_, Nov 03 2018 %H A057949 Eric M. Schmidt, <a href="/A057949/b057949.txt">Table of n, a(n) for n = 1..10000</a> %e A057949 2205 is in S = {1,5,9, ... 4i+1, ...}, 2205 = 5*9*49 = 5*21^2; 5, 9, 21 and 49 are S-primes (A057948). %o A057949 (Sage) %o A057949 def A057949_list(bound) : %o A057949 numterms = (bound-1)//4 + 1 %o A057949 M = [1] * numterms %o A057949 for k in range(1, numterms) : %o A057949 if M[k] == 1 : %o A057949 kpower = k %o A057949 while kpower < numterms : %o A057949 step = 4*kpower+1 %o A057949 for j in range(kpower, numterms, step) : %o A057949 M[j] *= 4*k+1 %o A057949 kpower = 4*kpower*k + kpower + k %o A057949 # Now M[k] contains the product of the terms p^e where p is an S-prime %o A057949 # and e is maximal such that p^e divides 4*k+1 %o A057949 return [4*k+1 for k in range(numterms) if M[k] > 4*k+1] %o A057949 # _Eric M. Schmidt_, Dec 11 2016 %o A057949 (PARI) ok(n)={if(n%4==1, my(f=factor(n)); my(s=[f[i,2] | i<-[1..#f~], f[i,1]%4==3]); vecsum(s)>=4 && vecmax(s)<vecsum(s)-1, 0)} \\ _Andrew Howroyd_, Nov 25 2018 %Y A057949 Cf. A054520, A057948, A057950. %Y A057949 Cf. A343826 (only 1 way), A343827 (exactly 2 ways), A343828 (exactly 3 ways). %K A057949 nonn %O A057949 1,1 %A A057949 _Jud McCranie_, Oct 14 2000 %E A057949 Offset corrected by _Eric M. Schmidt_, Dec 11 2016