A057961 Number of points in square lattice covered by a disc centered at (0,0) as its radius increases.
1, 5, 9, 13, 21, 25, 29, 37, 45, 49, 57, 61, 69, 81, 89, 97, 101, 109, 113, 121, 129, 137, 145, 149, 161, 169, 177, 185, 193, 197, 213, 221, 225, 233, 241, 249, 253, 261, 277, 285, 293, 301, 305, 317, 325, 333, 341, 349, 357, 365, 373, 377, 385, 401, 405, 421
Offset: 1
Examples
a(2)=5 because (0,0); (0,1); (0,-1); (1,0); (-1,0) are covered by any disc of radius between 1 and sqrt(2).
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- L. Edson Jeffery, Illustration of first few terms.
Crossrefs
Programs
-
Mathematica
max = 100; A001481 = Select[Range[0, 4*max], SquaresR[2, #] != 0 &]; Table[SquaresR[2, A001481[[n]]], {n, 1, max}] // Accumulate (* Jean-François Alcover, Oct 04 2013 *)
Comments