cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057982 Number of singular n X n (-1,1)-matrices.

This page as a plain text file.
%I A057982 #22 Feb 16 2025 08:32:43
%S A057982 0,8,320,43264,22003712,43090149376,326720427917312,
%T A057982 9588057159626653696,1086099857128493963804672
%N A057982 Number of singular n X n (-1,1)-matrices.
%C A057982 a(n) = 2^(2n-1)*A046747(n-1). - Kevin Costello, May 18 2005
%H A057982 R. P. Brent and J. H. Osborn, <a href="http://arxiv.org/abs/1208.3330">Bounds on minors of binary matrices</a>, arXiv preprint arXiv:1208.3330 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 25 2012
%H A057982 Konstantin Tikhomirov, <a href="https://arxiv.org/abs/1812.09016">Singularity of random Bernoulli matrices</a>, arXiv preprint arXiv:1812.09016 [math.PR], 2018-2019.
%H A057982 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SingularMatrix.html">Singular Matrix.</a>
%F A057982 a(n)/2^(n^2) ~ (1/2 + o_n(1))^n (proved by Tikhomirov). - _Timothy Y. Chow_, Jan 17 2019
%Y A057982 Complement of A056990.
%Y A057982 Cf. A046747.
%K A057982 nonn,more
%O A057982 1,2
%A A057982 _Eric W. Weisstein_, Oct 23 2000
%E A057982 More terms from Kevin Costello, May 18 2005
%E A057982 a(6)-a(9) from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 18 2008