This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058027 #21 Feb 16 2025 08:32:43 %S A058027 1,3,7,14,15,10,16,19,26,35,72,41,38,79,83,42,59,143,68,61,70,51,50, %T A058027 78,74,82,130,113,111,315,235,1190,211,407,112,122,142,246,693,133, %U A058027 138,162,1904,243,170,539,363,210,197,518,275,502,527,316,1729,224,228,909 %N A058027 Sum of terms of continued fraction for n-th harmonic number, 1 + 1/2 + 1/3 + ... + 1/n. %C A058027 Is anything known about the asymptotics of this sequence? %C A058027 Should be asymptotic to D*n^(3/2) with D=0.4.... - _Benoit Cloitre_, Dec 23 2003 %H A058027 G. C. Greubel, <a href="/A058027/b058027.txt">Table of n, a(n) for n = 1..1000</a> %H A058027 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a> %H A058027 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction</a> %e A058027 1 + 1/2 +1/3 = 11/6 = 1 + 1/(1 + 1/5). So sum of terms of continued fraction is 1 + 1 + 5 = 7. %t A058027 Table[Plus @@ ContinuedFraction[HarmonicNumber[n]], {n, 60}] (* _Ray Chandler_, Sep 17 2005 *) %o A058027 (PARI) a(n) = vecsum(contfrac(sum(k=1, n, 1/k))); \\ _Michel Marcus_, Mar 23 2017 %Y A058027 m-th harmonic number H(m) = A001008(m)/A002805(m). %Y A058027 Cf. A055573, A100398, A110020, A112286, A112287. %K A058027 easy,nonn %O A058027 1,2 %A A058027 _Leroy Quet_, Nov 15 2000