This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058031 #105 Sep 08 2022 08:45:02 %S A058031 1,1,9,49,169,441,961,1849,3249,5329,8281,12321,17689,24649,33489, %T A058031 44521,58081,74529,94249,117649,145161,177241,214369,257049,305809, %U A058031 361201,423801,494209,573049,660969,758641,866761,986049,1117249,1261129,1418481,1590121 %N A058031 a(n) = n^4 - 2*n^3 + 3*n^2 - 2*n + 1, the Alexander polynomial for reef and granny knots. %C A058031 "The standard knot invariant, in the pre-Jones era of knot theory, was the Alexander polynomial, invented in 1926. This assigns to each knot a polynomial in a variable t, which can be calculated by following a standard procedure." See Courant and Robbins, p. 503. %C A058031 First differences are in A105374. - _Wesley Ivan Hurt_, Apr 18 2016 %D A058031 Richard Courant and Herbert Robbins, What Is Mathematics?, 2nd Ed. 1996, pp. 501-505. %H A058031 Vincenzo Librandi, <a href="/A058031/b058031.txt">Table of n, a(n) for n = 0..1000</a> %H A058031 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A058031 G.f.: (1-4*x+14*x^2+4*x^3+9*x^4)/(1-x)^5. - _Colin Barker_, Jan 17 2012 %F A058031 a(n) = (n^2-n+1)^2. - _Carmine Suriano_, Feb 16 2012 %F A058031 3*a(n+3) = A062938(n) + A062938(n+1) + A062938(n+2). - _Bruno Berselli_, Feb 16 2012 %F A058031 a(n) = (n-2)*(n-1)*n*(n+1) + (2*n-1)^2. - _Charlie Marion_, Apr 11 2013 %F A058031 a(n) = A002061(n)^2. - _Richard R. Forberg_, Sep 03 2013 %F A058031 a(n) = (n*(n-1))^2 + (n-1)^2 + n^2, sum of three squares. - _Carmine Suriano_, Jun 16 2014 %F A058031 a(n) = A002378(A002378(n-1))+A002378(n-1)+1, where A002378(-1)=0. [_Bruno Berselli_, May 28 2015] %F A058031 E.g.f.: exp(x)*(1 + 4*x^2 + 4*x^3 + x^4). - _Ilya Gutkovskiy_, Apr 16 2016 %F A058031 a(n) = (n-1)^4 + 2*(n-1)^3 + 3*(n-1)^2 + 2*(n-1) + 1. - _Bruce J. Nicholson_, Apr 07 2017 %F A058031 For n>0 a(n) = A002522(n)*A002522(n-1) - 1. - _Bruce J. Nicholson_, Jul 02 2017 %p A058031 A058031:=n->(n^2 - n + 1)^2; seq(A058031(n), n=0..50); # _Wesley Ivan Hurt_, Jun 19 2014 %t A058031 Table[(n^2 - n + 1)^2, {n, 0, 50}] (* _Wesley Ivan Hurt_, Jun 19 2014 *) %t A058031 LinearRecurrence[{5, -10, 10, -5, 1}, {1, 1, 9, 49, 169}, 50] (* _Vincenzo Librandi_, Apr 11 2017 *) %o A058031 (Magma) [(n^2 - n + 1)^2 : n in [0..50]]; // _Wesley Ivan Hurt_, Jun 19 2014 %o A058031 (PARI) a(n)=n^4-2*n^3+3*n^2-2*n+1 \\ _Charles R Greathouse IV_, Jun 19 2014 %o A058031 (PARI) lista(nn) = for(n=0, nn, print1((n^2-n+1)^2, ", ")); \\ _Altug Alkan_, Apr 16 2016 %o A058031 (Python) def a(n): return n**4 - 2*n**3 + 3*n**2 - 2*n + 1 # _Indranil Ghosh_, Apr 06 2017 %Y A058031 Cf. A000290, A002061, A002378, A002522, A062938, A099254, A105374. %K A058031 nonn,easy %O A058031 0,3 %A A058031 _Jason Earls_, Nov 21 2000 %E A058031 Name corrected by _Andrey Zabolotskiy_, Nov 21 2017