cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058041 Noncubes equal to the sum of cubes of their prime factors.

This page as a plain text file.
%I A058041 #13 Dec 25 2018 11:29:47
%S A058041 378,2548,2836295,4473671462,23040925705,13579716377989,
%T A058041 21467102506955,119429556097859
%N A058041 Noncubes equal to the sum of cubes of their prime factors.
%C A058041 Let (p_1,p_2,...,p_m) = prime factors of n (m>1, k>0); sequence gives n such that n = Sum_{i=1,2,..,m} (p_i)^3.
%C A058041 Repeated prime factors are used only once.
%D A058041 J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 261 pp. 186, Ellipses, Paris 2004.
%H A058041 Jean-Marie De Koninck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Koninck/koninck71.html">Partial Sums of Powers of Prime Factors</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.6
%H A058041 J. M. de Koninck and Armel Mercier, <a href="http://www.ams.org/bookpages/pint/">1001 Problems in Classical Number Theory</a>, American Mathematical Society 2007. Page 160.
%e A058041 378 = 2 * 3^3 * 7 = 2^3 + 3^3 + 7^3;
%e A058041 2548 = 2^2 * 7^2 * 13 = 2^3 + 7^3 + 13^3;
%e A058041 2836295 = 5 * 7 * 11 * 53 * 139 = 5^3 + 7^3 + 11^3 + 53^3 + 139^3;
%e A058041 4473671462 = 2 * 13 * 179 * 593 * 1621 = 2^3 + 13^3 + 179^3 + 593^3 + 1621^3;
%e A058041 23040925705 = 5 * 7 * 167 * 1453 * 2713 = 5^3 + 7^3 + 167^3 + 1453^3 + 2713^3;
%e A058041 13579716377989 = 19 * 157 * 173 * 1103 * 23857 = 19^3 + 157^3 + 173^3 + 1103^3 + 23857^3;
%e A058041 21467102506955 = 5 * 73 * 313 * 1439 * 27791 = 5^3 + 7^3 + 313^3 + 1439^3 + 27791^3;
%e A058041 119429556097859 = 7 * 53 * 937 * 6983 * 49199 = 7^3 + 53^3 + 937^3 + 6983^3 + 49199^3.
%o A058041 (PARI) isok(n) = if (!ispower(n, 3), my(f=factor(n)); sum(k=1, #f~, f[k,1]^3) == n); \\ _Michel Marcus_, Dec 25 2018
%Y A058041 Cf. A007412 (noncubes).
%K A058041 nonn,more
%O A058041 1,1
%A A058041 _Naohiro Nomoto_, Nov 21 2000
%E A058041 Corrected definition and five more terms from Koffie Duah (admc1961(AT)live.com), Feb 16 2008