This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058055 #48 Nov 02 2023 05:45:38 %S A058055 1,3,8,5,12,11,18,51,82,49,234,23,42,75,86,231,174,107,288,63,80,69, %T A058055 102,325,166,765,128,143,822,727,276,597,226,835,702,461,254,693,592, %U A058055 797,1284,349,370,2337,596,645,3012,1033,590,4083,1490,757,882,833,1668 %N A058055 a(n) is the smallest positive number m such that m^2 + n is the next prime > m^2. %C A058055 The primes are in A058056. %H A058055 Zak Seidov, <a href="/A058055/b058055.txt">Table of n, a(n) for n = 1..500</a> (first 400 terms from T. D. Noe) %F A058055 a(n) = Min{ m > 0 | m^2 + n is the next prime after m^2}. %F A058055 A053000(a(n)) = n. - _Zak Seidov_, Apr 12 2013 %e A058055 n=6: a(6)=11 and 11^2+6 is 127, a prime; n=97: a(97) = 2144 and 2144^2+97 = 4596833, the least prime of the form m^2+97. %p A058055 for m from 1 to 10^5 do %p A058055 r:= nextprime(m^2)-m^2; %p A058055 if not assigned(R[r]) then R[r]:= m end if; %p A058055 end do: %p A058055 J:= map(op,{indices(R)}): %p A058055 N:= min({$1..J[-1]} minus J)-1: %p A058055 [seq(R[j],j=1..N)]; # _Robert Israel_, Aug 10 2012 %t A058055 nn = 100; t = Table[0, {nn}]; found = 0; m = 0; While[found < nn, m++; k = NextPrime[m^2] - m^2; If[k <= nn && t[[k]] == 0, t[[k]] = m; found++]]; t (* _T. D. Noe_, Aug 10 2012 *) %o A058055 (Sage) %o A058055 R = {} # After _Robert Israel_'s Maple script. %o A058055 for m in (1..2^12) : %o A058055 r = next_prime(m^2) - m^2 %o A058055 if r not in R : R[r] = m %o A058055 L = sorted(R.keys()) %o A058055 for i in (1..len(L)-1) : %o A058055 if L[i] != L[i-1]+1 : break %o A058055 [R[k] for k in (1..i)] # _Peter Luschny_, Aug 11 2012 %Y A058055 Cf. A053000, A070316, A070317. %Y A058055 See A085099, A215249 for other versions. %K A058055 nonn %O A058055 1,2 %A A058055 _Labos Elemer_, Nov 20 2000 %E A058055 Definition corrected by _Zak Seidov_, Mar 03 2008, and again by _Franklin T. Adams-Watters_, Aug 10 2012