This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058057 #18 Nov 14 2013 12:04:59 %S A058057 1,1,0,1,1,0,1,3,1,1,1,6,6,8,3,1,10,20,38,35,16,1,15,50,134,213,211, %T A058057 96,1,21,105,385,915,1479,1459,675,1,28,196,952,3130,7324,11692,11584, %U A058057 5413,1,36,336,2100,9090,28764,65784,104364,103605,48800 %N A058057 Triangle giving coefficients of ménage hit polynomials. %C A058057 Triangle of coefficients of polynomials P(n; x) = Permanent(M), where M=[m(i,j)] is n X n matrix defined by m(i,j)=x if 0<=i-j<=1 else m(i,j)=1. - _Vladeta Jovovic_, Jan 23 2003 %D A058057 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198. %H A058057 T. D. Noe, <a href="/A058057/b058057.txt">Rows n = 0..100 of triangle, flattened</a> %F A058057 G.f.: Sum(n!*(x*y)^n/(1+x*(y-1))^(2*n+1),n=0..infinity). [_Vladeta Jovovic_, Dec 13 2009] %e A058057 1; 1,0; 1,1,0; 1,3,1,1; 1,6,6,8,3; ... %p A058057 V := proc(n) local k; add( binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( V(r),x,s ); end; a := (n,k)->W(n,n-k); %t A058057 max = 9; f[x_, y_] := Sum[n!*((x*y)^n/(1 + x*(y-1))^(2*n+1)), {n, 0, max}]; Flatten[ MapIndexed[ Take[#1, #2[[1]]] & , CoefficientList[ Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]]] (*_Jean-François Alcover_, Jun 29 2012, after _Vladeta Jovovic_ *) %Y A058057 Diagonals give A000271, A000426, A000222, A000386, A000450, A058085, A058086. %Y A058057 Cf. A080018, A080061. %K A058057 nonn,easy,nice,tabl %O A058057 0,8 %A A058057 _N. J. A. Sloane_, Dec 02 2000