cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058060 Number of distinct prime factors of d(n), the number of divisors of n.

This page as a plain text file.
%I A058060 #27 Jan 15 2024 01:45:26
%S A058060 0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,
%T A058060 1,1,1,1,1,1,1,1,1,2,2,1,1,2,1,2,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,
%U A058060 1,1,1,2,1,1,2,2,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,2,2,1,1,1,1,1,1
%N A058060 Number of distinct prime factors of d(n), the number of divisors of n.
%C A058060 The sums of the first 10^k terms, for k = 1, 2, ..., are 9, 122, 1285, 13096, 131729, 1319621, 13203252, 132055132, 1320621032, 13206429426, 132064984784, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Rieger (1972) and Heppner (1974) (see the Formula section), can be empirically evaluated by 1.3206... . - _Amiram Eldar_, Jan 15 2024
%D A058060 József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.
%H A058060 G. C. Greubel, <a href="/A058060/b058060.txt">Table of n, a(n) for n = 1..5001</a>
%H A058060 E. Heppner, <a href="https://eudml.org/doc/151410">Über die Iteration von Teilerfunktionen</a>, Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 176-182.
%H A058060 G. J. Rieger, <a href="https://doi.org/10.1007/BF01303534">Über einige arithmetische Summen</a>, Manuscripta Mathematica, Vol. 7 (1972), pp. 23-34.
%F A058060 a(n) = A001221(A000005(n)).
%F A058060 Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^5), where c is a constant (Rieger, 1972; Heppner, 1974). - _Amiram Eldar_, Jan 15 2024
%e A058060 n = 120 = 8*3*5, d(n) = 16 = 2^4, so a(120)=1.
%t A058060 Table[PrimeNu[DivisorSigma[0, n]], {n, 1, 100}] (* _G. C. Greubel_, May 05 2017 *)
%o A058060 (PARI) a(n)=omega(numdiv(n)) \\ _Charles R Greathouse IV_, May 05 2017
%Y A058060 Cf. A001221, A000005, A058061.
%K A058060 nonn,easy
%O A058060 1,12
%A A058060 _Labos Elemer_, Nov 23 2000
%E A058060 Offset corrected by _Sean A. Irvine_, Jul 22 2022