This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058077 #53 Feb 16 2024 10:13:27 %S A058077 3,10,21,330,78,2380,171,8855,475020,465,2324784,101270,903,178365, %T A058077 22957480,45057474,1830,99795696,971635,2628,277962685,1837620, %U A058077 581106988,144520208820,4082925,5253,5160610,5886,6438740 %N A058077 Binomial coefficients formed from consecutive primes: a(n) = binomial( prime(n+1), prime(n) ). %C A058077 Conjecture: for each value of n > 1, if a(n+1) has the same number of digits as a(n) and a(n+1) > a(n), then prime(n+2) - prime(n+1) = prime(n+1) - prime(n). This conjecture has been verified for all n < 3*10^7. - _Ahmad J. Masad_, Oct 08 2019 %H A058077 Michel Marcus, <a href="/A058077/b058077.txt">Table of n, a(n) for n = 1..10000</a> %H A058077 Rémy Sigrist, <a href="/A058077/a058077.png">Colored logarithmic scatterplot of the first 100000 terms</a> (where the color is function of A001223(n)) %F A058077 a(n) = binomial(A000040(n+1), A001223(n)). %e A058077 n=6: a(6) = C(p(7),p(6)) = C(17,13) = 57120/24 = 2380. %t A058077 Table[Binomial[Prime[n+1],Prime[n]],{n,1,20}] (* _Vaclav Kotesovec_, Nov 13 2014 *) %Y A058077 Cf. A000040, A001223. %Y A058077 Cf. A037293, A066526, A080911, A277341. %K A058077 nonn %O A058077 1,1 %A A058077 _Labos Elemer_, Nov 13 2000 %E A058077 Offset corrected by _Vaclav Kotesovec_, Nov 13 2014