cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058087 Triangle read by rows, giving coefficients of the ménage hit polynomials ordered by descending powers. T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A058087 #64 Mar 15 2025 06:34:03
%S A058087 1,2,-1,2,0,0,2,3,0,1,2,8,4,8,2,2,15,20,40,30,13,2,24,60,152,210,192,
%T A058087 80,2,35,140,469,994,1477,1344,579,2,48,280,1232,3660,7888,11672,
%U A058087 10800,4738,2,63,504,2856,11268,32958,70152,104256,97434,43387
%N A058087 Triangle read by rows, giving coefficients of the ménage hit polynomials ordered by descending powers. T(n, k) for 0 <= k <= n.
%C A058087 Riordan's book (page 197) notes that an alternative convention is to put 2 in the first row of the triangle. - _William P. Orrick_, Aug 09 2020
%D A058087 I. Kaplansky and J. Riordan, The probleme des menages, Scripta Mathematica, 1946, 12 (2), 113-124.
%D A058087 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
%D A058087 Tolman, L. Kirk, "Extensions of derangements", Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing, Humboldt State University, Arcata, California, September 5-7, 1979. Vol. 26. Utilitas Mathematica Pub., 1980. See Table I. - _N. J. A. Sloane_, Jul 06 2014
%H A058087 G. C. Greubel, <a href="/A058087/b058087.txt">Rows n = 0..50 of the triangle, flattened</a>
%H A058087 I. Kaplansky and J. Riordan, <a href="/A000166/a000166_1.pdf">The problème des ménages</a>, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
%H A058087 Anthony C. Robin, <a href="http://www.jstor.org/stable/40378205">90.72 Circular Wife Swapping</a>, The Mathematical Gazette, Vol. 90, No. 519 (Nov., 2006), pp. 471-478.
%F A058087 G.f.: (1-x*(y-1))*Sum_{n>=0} ( n!*(x*y)^n/(1+x*(y-1))^(2*n+1) ). - _Vladeta Jovovic_, Dec 14 2009
%F A058087 Row n of the triangle lists the coefficients of the polynomial U_n(t) = Sum_{k=0..n} (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(t-1)^k, with higher order terms first (Kaplansky and Riordan). - _William P. Orrick_, Aug 09 2020
%F A058087 T(n, k) = Sum_{j=0..k} (-1)^j*(2*n*(k-j)!/(n+k-j))*binomial(n-k+j, n-k)*binomial(n+k-j, n-k+j), with T(0, k) = 1. - _G. C. Greubel_, May 15 2021 [Corrected by _Sean A. Irvine_, Jul 23 2022]
%e A058087 The triangle begins:
%e A058087   1;
%e A058087   2, -1;
%e A058087   2,  0,   0;
%e A058087   2,  3,   0,    1;
%e A058087   2,  8,   4,    8,     2;
%e A058087   2, 15,  20,   40,    30,    13;
%e A058087   2, 24,  60,  152,   210,   192,    80;
%e A058087   2, 35, 140,  469,   994,  1477,  1344,    579;
%e A058087   2, 48, 280, 1232,  3660,  7888, 11672,  10800,  4738;
%e A058087   2, 63, 504, 2856, 11268, 32958, 70152, 104256, 97434, 43387;
%e A058087 The polynomials start:
%e A058087   [0] 1;
%e A058087   [1] 2*x - 1;
%e A058087   [2] 2*x^2;
%e A058087   [3] 2*x^3 + 3*x^2 + 1;
%e A058087   [4] 2*x^4 + 8*x^3 + 4*x^2 + 8*x + 2;
%e A058087   [5] 2*x^5 + 15*x^4 + 20*x^3 + 40*x^2 + 30*x + 13.
%p A058087 U := proc(n) if n = 0 then return 1 fi;
%p A058087 add((2*n/(2*n-k))*binomial(2*n-k, k)*(n-k)!*(x-1)^k, k=0..n) end:
%p A058087 W := proc(r, s) coeff(U(r), x, s ) end:
%p A058087 T := (n, k) -> W(n, n-k): seq(seq(T(n, k), k=0..n), n=0..9);
%t A058087 u[n_] := Sum[ 2*n/(2*n-k)*Binomial[2*n-k, k]*(n-k)!*(x-1)^k, {k, 0, n}]; w[r_, s_] := Coefficient[u[r], x, s]; a[n_, k_] := w[n, n-k]; a[0, 0]=1; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 10 2012, translated from Maple *)
%t A058087 T[n_, k_]:= If[n==0, 1, Sum[(-1)^j*(2*n*(k-j)!/(n+k-j))*Binomial[j+n-k, n - k]*Binomial[n+k-j, n-k+j], {j, 0, k}]];
%t A058087 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 15 2021 *)
%o A058087 (SageMath)
%o A058087 a = [[1]]
%o A058087 for n in range(1, 10):
%o A058087     g = expand(
%o A058087         sum((x - 1)^ k * (2*n) * binomial(2*n-k, k) * factorial(n-k) / (2*n-k)
%o A058087             for k in range(0, n + 1)
%o A058087         )
%o A058087     )
%o A058087     coeffs = g.coefficients(sparse=False)
%o A058087     coeffs.reverse()
%o A058087     a.append(coeffs) # _William P. Orrick_, Aug 12 2020
%o A058087 (Sage)
%o A058087 def A058087(n,k): return 1 if (n==0) else sum( (-1)^j*(2*n*factorial(k-j)/(n+k-j))*binomial(j+n-k, n-k)*binomial(n+k-j, n-k+j) for j in (0..k) )
%o A058087 flatten([[A058087(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 15 2021
%o A058087 (PARI) U(n,t)=sum(k=0,n, ((2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(t-1)^k));
%o A058087 print1(1,", "); for(n=1,9,forstep(k=n,0,-1,print1(polcoef(U(n,'x),k),", "))) \\ _Hugo Pfoertner_, Aug 30 2020
%Y A058087 Diagonals give A000179, A000425, A000033, A000159, A000181, A000185, A058089, A058090.
%Y A058087 Essentially a mirror image of A094314.
%K A058087 sign,easy,tabl,nice
%O A058087 0,2
%A A058087 _N. J. A. Sloane_, Dec 02 2000
%E A058087 T(1,1) set to -1 to accord with Riordan by _William P. Orrick_, Aug 09 2020