This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058095 #29 Jan 02 2017 01:52:34 %S A058095 1,-4,2,12,-21,4,36,-68,21,112,-184,44,275,-456,112,644,-1019,240, %T A058095 1370,-2156,514,2828,-4340,992,5498,-8392,1930,10428,-15675,3528, %U A058095 19060,-28472,6399,34072,-50382,11184,59333,-87260,19312,101496,-148148,32480,170130,-247156 %N A058095 McKay-Thompson series of class 9c for the Monster group. %C A058095 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %H A058095 Seiichi Manyama, <a href="/A058095/b058095.txt">Table of n, a(n) for n = 0..1000</a> %H A058095 D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994). %H A058095 <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a> %F A058095 Expansion of q^(1/3) * 3 * b(q) / c(q) in powers of q where b(), c() are cubic AGM theta functions. %F A058095 Expansion of q^(1/3) * (eta(q) / eta(q^3))^4 in powers of q. - _Michael Somos_, Mar 24 2007 %F A058095 Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u+v)^3 - u*v * (u+3) * (v+3) . %F A058095 Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*v^2 + v^2*w^2 - v*u^2*w^2 + u*w*v^2 - 9*u*w * (u+w). %F A058095 G.f.: (Product_{k>0} (1 + x^k + x^(2*k)))^-4. %F A058095 Euler transform of period 3 sequence [ -4, -4, 0, ...]. - _Michael Somos_, Mar 24 2007 %F A058095 a(n) = A112146(3*n - 1). Convolution inverse of A128758. %e A058095 G.f. = 1 - 4*x + 2*x^2 + 12*x^3 - 21*x^4 + 4*x^5 + 36*x^6 - 68*x^7 + ... %e A058095 T9c = 1/q - 4*q^2 + 2*q^5 + 12*q^8 - 21*q^11 + 4*q^14 + 36*q^17 - 68*q^20 + ... %t A058095 a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x + A]/QPochhammer[x^3 + A])^4, n]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Nov 06 2015, adapted from _Michael Somos_'s PARI script *) %o A058095 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^3 + A))^4, n))}; /* _Michael Somos_, Mar 24 2007 */ %Y A058095 Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc. %Y A058095 Cf. A112146, A128758. %K A058095 sign %O A058095 0,2 %A A058095 _N. J. A. Sloane_, Nov 27 2000