cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058129 Number of nonisomorphic monoids (semigroups with identity) of order n.

This page as a plain text file.
%I A058129 #51 Aug 11 2025 10:47:59
%S A058129 0,1,2,7,35,228,2237,31559,1668997,3685886630
%N A058129 Number of nonisomorphic monoids (semigroups with identity) of order n.
%H A058129 Geoff Cruttwell, <a href="https://www.reluctantm.com/gcruttw/publications/ams2014CruttwellCountingFiniteCats.pdf">Counting Finite Categories</a>, presentation, (2018).
%H A058129 Remigiusz Durka and Kamil Grela, <a href="https://arxiv.org/abs/1911.12814">On the number of possible resonant algebras</a>, arXiv:1911.12814 [hep-th], 2019.
%H A058129 Najwa Ghannoum, <a href="https://theses.hal.science/tel-03948327">Investigation of finite categories</a>, Doctoral thesis, Univ. Côte d'Azur (France); Univ. Libanaise (Lebanon), tel-0394832 [math.CT], 2022.
%H A058129 Pierre A. Grillet, <a href="https://doi.org/10.1080/00927872.2013.790036">Counting Semigroups</a>, Communications in Algebra, 43(2), 574-596, (2014).
%H A058129 Mikhail Kornev, <a href="https://arxiv.org/abs/2508.04454">On the Classification of n-Valued Monoids and Groups of Order 3</a>, arXiv:2508.04454 [math.GR], 2025. See p. 11.
%H A058129 Václav Koubek and Vojtěch Rödl, <a href="http://eudml.org/doc/17383">Note on the number of monoids of order n</a>, Commentationes Mathematicae Universitatis Carolinae 026.2 (1985): 309-314.
%H A058129 Eric Postpischil, <a href="http://groups.google.com/groups?&amp;hl=en&amp;lr=&amp;ie=UTF-8&amp;selm=11802%40shlump.nac.dec.com&amp;rnum=2">Posting to sci.math newsgroup, May 21 1990</a>
%H A058129 Clayton Cristiano Silva, <a href="http://www.ime.unicamp.br/~ftorres/ENSINO/MONOGRAFIAS/Clayton.pdf">Irreducible Numerical Semigroups</a>, University of Campinas, São Paulo, Brazil (2019).
%H A058129 <a href="/index/Mo#monoids">Index entries for sequences related to monoids</a>
%F A058129 a(n) = 2*A058133(n) - A058132(n).
%F A058129 a(n) < A027851(n) except for equality iff n = 1. - _M. F. Hasler_, Dec 10 2018
%F A058129 From _Elijah Beregovsky_, May 13 2025 (Start):
%F A058129 a(n) >= A027851(n-1).
%F A058129 Conjecture: a(n) = A027851(n-1)*(1+o(1)). See Koubek and Rödl paper in the Links.
%F A058129 Conjecture: a(n) = A058153(n)/n! * (1+o(1)). See Grillet paper in the Links. (End)
%Y A058129 Cf. A058132, A058133, A058153.
%Y A058129 Cf. A027851 (number of all nonisomorphic semigroups).
%K A058129 nonn,hard,more
%O A058129 0,3
%A A058129 _Christian G. Bower_, Nov 13 2000
%E A058129 a(8) from _Christian G. Bower_, Dec 26 2006
%E A058129 a(0) = 0 prepended by _M. F. Hasler_, Dec 10 2018
%E A058129 a(9) from _Elijah Beregovsky_, from the work of G. Cruttwell and R. Leblanc, May 12 2025