This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A058188 #13 Mar 13 2023 17:54:17 %S A058188 1,0,1,0,1,0,1,1,0,1,0,2,2,1,1,1,1,1,2,2,1,1,1,1,2,3,3,2,1,0,2,2,1,1, %T A058188 2,2,2,2,2,2,2,2,3,2,2,1,1,3,4,3,2,2,1,2,3,3,4,3,3,2,1,1,3,2,1,1,3,3, %U A058188 3,3,2,2,3,3,3,3,2,2,3,2,4,3,4,3,3,4,4,3,3,2,2,3,4,3,3,3,2,2,1,3 %N A058188 Number of primes between prime(n) and prime(n) + sqrt(prime(n)), where prime(n) is the n-th prime. %C A058188 Conjecture: if prime(n)>=127, there is always at least one prime between prime(n) and prime(n) + sqrt(prime(n)). Easily checked for prime(n)<1.1e15 in existing maximal gap tables %D A058188 R. K. Guy: Unsolved problems in number theory, 2nd ed., Springer-Verlag,1994; Sections A8, A 9. %D A058188 Paulo Ribenboim: The little book of big primes, Springer-Verlag,1991; 142ff %H A058188 T. D. Noe, <a href="/A058188/b058188.txt">Table of n, a(n) for n = 1..10000</a> %e A058188 a(12) = 2 because between p(12)= 37 and 37+sqrt(37) = 43.08 there are two primes: 41 and 43 %t A058188 Table[PrimePi[p+Sqrt[p]]-PrimePi[p],{p,Prime[Range[100]]}] (* _Harvey P. Dale_, Mar 13 2023 *) %o A058188 (PARI) a(n) = my(p=prime(n)); primepi(p+sqrtint(p)) - n; \\ _Michel Marcus_, Jun 21 2017 %Y A058188 Cf. A030296. %K A058188 nonn %O A058188 1,12 %A A058188 _Adam Kertesz_, Dec 04 2000