cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058197 Where d(m) (number of divisors, A000005) rises by at least n.

This page as a plain text file.
%I A058197 #27 Jul 02 2025 16:02:00
%S A058197 1,5,11,11,23,23,47,47,59,59,119,119,167,167,179,179,239,239,359,359,
%T A058197 359,359,719,719,719,719,719,719,839,839,1259,1259,1259,1259,1679,
%U A058197 1679,2519,2519,2519,2519,2519,2519,2519,2519,3359,3359,5039,5039,5039,5039
%N A058197 Where d(m) (number of divisors, A000005) rises by at least n.
%C A058197 a(n) exists for all n (Turán, 1954). - _Amiram Eldar_, Apr 13 2024
%D A058197 József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.
%H A058197 Amiram Eldar, <a href="/A058197/b058197.txt">Table of n, a(n) for n = 1..2044</a> (terms 1..1004 from T. D. Noe)
%H A058197 Pál Turán, Problem 71, Matematikai Lapok, Vol. 5 (1954), p. 48, <a href="https://real-j.mtak.hu/9380">entire volume</a>; Solution to Problem 71, by Lajos Takács, ibid., Vol. 56, (1956), p. 154, <a href="https://real-j.mtak.hu/9386">entire volume</a>.
%F A058197 A051950(a(n) + 1) <= n. - _Reinhard Zumkeller_, Feb 04 2013
%e A058197 d(11) = 2, d(12) = 6 gives first jump of >= 3, so a(3) = a(4) = 11.
%t A058197 d[m_] := d[m] = DivisorSigma[0, m]; td = Table[d[m] - d[m-1], {m, 2, 6000}]; a[n_] := Position[td, j_ /; j >= n, 1][[1, 1]]; Table[a[n], {n, Max[td]}] (* _Jean-François Alcover_, Nov 02 2011 *)
%t A058197 With[{d=Differences[DivisorSigma[0,Range[5100]]]},Flatten[Table[ Position[ d,_?(#>=n&),{1},1],{n,50}]]] (* _Harvey P. Dale_, Oct 02 2015 *)
%o A058197 (Haskell)
%o A058197 import Data.List (findIndex)
%o A058197 import Data.Maybe (fromJust)
%o A058197 a058197 n = (+ 1) $ fromJust $ findIndex (n <=) $ tail a051950_list
%o A058197 -- _Reinhard Zumkeller_, Feb 04 2013
%Y A058197 Equals A058198(n) - 1.
%Y A058197 Cf. A000005, A051950, A058199.
%K A058197 nonn,nice,easy
%O A058197 1,2
%A A058197 _N. J. A. Sloane_, Nov 28 2000
%E A058197 More terms from _James Sellers_, Nov 29 2000