cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058199 Where d(m) (number of divisors, A000005) falls by at least n.

This page as a plain text file.
%I A058199 #36 Jul 02 2025 16:02:00
%S A058199 4,6,12,12,24,30,36,60,60,60,120,120,120,180,180,180,240,240,360,360,
%T A058199 360,420,720,720,720,720,840,840,840,1260,1260,1260,1680,1680,1680,
%U A058199 1680,1680,2160,2520,2520,2520,2520,2520,2520,2520,2520,5040,5040,5040
%N A058199 Where d(m) (number of divisors, A000005) falls by at least n.
%C A058199 In the first 500 entries, only 3 entries (1, 2, and 25200) of A002182 are missed. - _Bill McEachen_, Nov 05 2020
%C A058199 a(n) exists for all n (Turán, 1954). - _Amiram Eldar_, Apr 13 2024
%D A058199 József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.
%H A058199 Amiram Eldar, <a href="/A058199/b058199.txt">Table of n, a(n) for n = 1..2014</a> (terms 1..500 from T. D. Noe)
%H A058199 Pál Turán, Problem 71, Matematikai Lapok, Vol. 5 (1954), p. 48, <a href="https://real-j.mtak.hu/9380">entire volume</a>; Solution to Problem 71, by Lajos Takács, ibid., Vol. 56, (1956), p. 154, <a href="https://real-j.mtak.hu/9386">entire volume</a>.
%F A058199 A051950(a(n) + 1) <= - n. - _Reinhard Zumkeller_, Feb 04 2013
%e A058199 d(12) = 6, d(13) = 2 gives first drop of >= 3, so a(3) = a(4) = 12.
%t A058199 max = 10^4; dd = Differences[Table[DivisorSigma[0, m], {m, 1, max}]]; a[n_] := Position[dd, d_ /; d <= -n, 1, 1][[1, 1]]; Table[a[n], {n, 1, -Min[dd] }] (* _Jean-François Alcover_, Nov 23 2015 *)
%o A058199 (Haskell)
%o A058199 import Data.List (findIndex)
%o A058199 import Data.Maybe (fromJust)
%o A058199 a058199 n = fromJust $ findIndex (n <=) $ map negate a051950_list
%o A058199 -- _Reinhard Zumkeller_, Feb 04 2013
%Y A058199 Cf. A000005, A002182, A051950, A058197, A058198.
%K A058199 nonn,nice,easy
%O A058199 1,1
%A A058199 _N. J. A. Sloane_, Nov 28 2000
%E A058199 More terms from _James Sellers_, Nov 29 2000